国产在线一区二区不卡|在线观看中文字幕一区|亚洲中文无码h在线观看|欧美 亚洲 图色 另类|免费人成视频x8x8入口|国产福利观看天堂素人约啪|人妻无码专区一专区二专区三|国产婷婷成人久久AV免费高清

合肥金星智控科技股份有限公司
宣傳

位置:中冶有色 >

有色技術頻道 >

> 合金材料技術

> 304不銹鋼纖維/ZL104鋁合金復合泡沫的孔結構、力學、吸聲性能及其機理

304不銹鋼纖維/ZL104鋁合金復合泡沫的孔結構、力學、吸聲性能及其機理

177   編輯:管理員   來源:苗琪,左孝青,周蕓,王應武,郭路,王坦,黃蓓  
2024-04-09 08:42:58


滲流泡沫鋁獨特的開孔結構,使其具有低密度、高比強度、耐溫、不吸濕和可回收等特性[1~5] 這種泡沫鋁對頻率高于800Hz的噪聲有良好的吸收性能[6],有廣闊的應用前景[7~12]

滲流泡沫鋁的孔隙率,對其吸聲性能有顯著的影響[13~19] 低孔隙率(孔隙率低于70%)滲流泡沫鋁在1000~5800 Hz的平均吸聲系數(shù)低于0.7[6] 隨著孔隙率的提高其吸聲性能提高,但是力學性能嚴重降低[20, 21] Wang Hui等[22]發(fā)現(xiàn),孔隙率從61.5%提高到65.5%時,泡沫鋁的吸聲系數(shù)增大了11.24%;Liu[23]制備的孔隙率為85%~96%的高孔隙率滲流泡沫鋁,其屈服強度只有0.13~0.28 MPa;Wu[21]采用熔模鑄造法制備的孔隙率為85%~93.5%的開孔泡沫鋁,其屈服強度也只有0.086~0.102 MPa 改性處理和T6熱處理使泡沫鋁的屈服強度有所提高(0.235 MPa),但是仍然不能滿足作為結構材料使用的要求

制備兼具高力學性能及高吸聲性能的滲流泡沫鋁,是重要的研究方向 提高滲流泡沫鋁力學性能最有效方法,是對泡沫基體進行復合化處理,用顆粒、晶須或纖維等材料使其強化 [24~31] Altink?k[24]研究了Al2O3/SiCp復合材料,發(fā)現(xiàn)起抗拉強度隨著SiCp粒徑的減小而提高;郭成等[25]制備了MgAl2O4晶須增強鋁基復合泡沫材料,發(fā)現(xiàn)MgAl2O4晶須使其壓縮性能大大提高;Zhang等[27]制備了編織碳纖維增強鋁基復合材料,發(fā)現(xiàn)纖維復合使其力學性能明顯提升;Mu等[28]制備了碳纖維/泡沫鋁復合材料,發(fā)現(xiàn)纖維含量(體積分數(shù))為5%的復合泡沫其壓縮性能比纖維含量為1%的復合泡沫明顯提高 本文制備ZL104合金泡沫和304不銹鋼纖維/ZL104合金復合泡沫,研究孔隙率和纖維含量對復合泡沫力學性能和吸聲性能的影響并分析其機理

1 實驗方法1.1 試樣的制備

基體材料為ZL104鋁合金(9.3%Si,0.25%Mg和0.32%Mn),滲流前驅體為NaCl顆粒,其直徑分別為0.35 mm(主鹽)和0.12 mm(調(diào)控鹽),比例為7∶1.2,增強體為304不銹鋼纖維(?0.1 mm×5 mm) 將前驅體顆粒和不銹鋼纖維均勻混合后壓制成預制體,然后將其加熱到650℃,保溫30 min后用ZL104合金熔體進行壓力滲流(滲流壓力0.4~0.8 MPa) 滲流體凝固后用水將其中的鹽顆粒溶除,通過工藝調(diào)控制備的試樣參數(shù)列于表1 試樣的孔隙率范圍為77%~86%,制備的合金泡沫(不含纖維的泡沫,1#~5#)及復合泡沫(6#~13#)纖維含量(體積分數(shù))分別為0%、2%、5%、8%和11%

Table 1

表1

表1合金泡沫和復合泡沫試樣的參數(shù)

Table 1Sample parameters of alloy foams and composite foams

SamplePore size/mmPorosity/%Fiber content/volume fraction, %Fiber size/mm2
1#0.35+0.12770
2#0.35+0.12800
3#0.35+0.12820
4#0.35+0.12840
5#0.35+0.12860
6#0.35+0.12778?0.1×5
7#0.35+0.12808?0.1×5
8#0.35+0.12828?0.1×5
9#0.35+0.12848?0.1×5
10#0.35+0.12868?0.1×5
11#0.35+0.12822?0.1×5
12#0.35+0.12825?0.1×5
13#0.35+0.128211?0.1×5


1.2 性能表征

(1) 用SEM(S-3400N型)表征孔結構,包括孔形貌、纖維分布以及纖維-基體結合情況;用鹽顆粒粒徑、結合掃描電鏡表征孔徑;用纖維與復合泡沫基體的體積比表征纖維含量;孔隙率為

?=1-ρ1ρ0?100%=(1-MV?1ρ0)?100%(1)

式中?為泡沫孔隙率;ρ0為ZL104鋁合金密度(2.65 g/cm3);ρ1為泡沫試樣密度,用排水法測量;M為泡沫試樣質(zhì)量;V為泡沫試樣體積

(2) 用Autograph AG-X100KN萬能試驗機測試泡沫試樣(直徑和厚度為30 mm)的壓縮性能,對試樣準靜態(tài)壓縮的速率為3 mm/min

(3) 根據(jù)國家標準GB/T 18696.2-2002,基于傳遞阻抗法,在剛性背襯條件下用SW-477阻抗管測試泡沫試樣(直徑和厚度為30 mm)在1000~5800 Hz頻率范圍內(nèi)的垂直入射吸聲系數(shù)

(4) 有限元模擬:使用COMSOL Multiphysics ?有限元軟件對復合泡沫壓縮過程進行有限元模擬,結合復合泡沫的力學性能分析纖維復合對復合泡沫力學性能的影響機理

(5) J-A模型分析:采用J-A模型表征復合泡沫的吸聲性能,結合測量的復合泡沫的吸聲系數(shù)分析纖維影響復合泡沫吸聲性能的機理

2 結果和討論2.1 ZL104合金泡沫和304不銹鋼纖維/ZL104合金復合泡沫的孔結構

圖1給出了ZL104合金泡沫和304不銹鋼纖維/ZL104合金復合泡沫的孔結構 由圖1a可見,合金泡沫的孔結構均勻,孔徑偏差較小,大部分孔隙呈扁圓形,孔隙間彼此貫通,幾乎看不到閉孔結構;由圖1b、c可見,纖維復合后孔壁的粗糙度和孔結構的復雜程度明顯提高,部分孔壁變?yōu)槔w維/合金復合孔壁,孔壁也比合金泡沫的更??;另外,在合金泡沫和復合泡沫孔壁上都有次孔結構(圖1a、b) 其原因是,在預制體混合和壓制過程中粒徑為0.12 mm的調(diào)控鹽顆粒填充在粒徑為0.35 mm主鹽顆粒間隙中,滲流后去除預制體形成了多孔孔壁結構



圖1ZL104合金泡沫和304不銹鋼纖維/ZL104合金復合泡沫的孔結構以及復合泡沫中纖維的狀態(tài)

Fig.1Pore structure of ZL104 alloy foam (a) and 304 stainless steel fiber/ZL104 alloy composite foam (b) and fiber in the composite foam (c~f)

由圖1c、d、e可見,纖維不規(guī)則地分布在孔壁和孔隙與孔隙之間的合金基體上,有(i)孔壁纖維、(ii)穿孔纖維和(iii)孔間纖維(部分嵌入孔壁、端頭部分延伸到孔隙中)三種形態(tài) 嵌入孔壁中的纖維(i)和(ii)有利于復合泡沫保持較高的強度,而聲波與孔壁和孔壁上的纖維(ii)和(iii)產(chǎn)生的摩擦增大可提高吸聲性能

2.2 力學性能2.2.1 孔隙率對合金泡沫和復合泡沫壓縮性能的影響

圖2給出了孔隙率為77%~86%的合金泡沫(圖2a,1#~5#)和纖維含量為8%(體積分數(shù))的復合泡沫的應力-應變曲線(圖2b,6#~10#),表2列出了不同孔隙率泡沫試樣的屈服強度 由圖2可見,合金泡沫和復合泡沫的壓縮曲線都有金屬泡沫典型的壓縮三階段特征:線彈性階段、塑性應變階段以及致密化階段 可以發(fā)現(xiàn),復合泡沫的塑性變形階段的曲線比合金泡沫的平滑,表明復合泡沫具有比合金泡沫更高的壓縮穩(wěn)定性 另外還可見,在相同的應變條件下復合泡沫致密化階段的應力值遠比合金泡沫的大,可歸結于纖維的增強作用 從表2可見,孔隙率由77%提高到86%,合金泡沫相應的屈服強度從1.9 MPa下降到0.5 MPa,復合泡沫相應的屈服強度從2.15 MPa下降到0.7 MPa,合金泡沫和復合泡沫的屈服強度都隨著孔隙率的增大而降低,而復合泡沫的屈服強度高于相同孔隙率的合金泡沫 還可以看出,在孔隙率相同的條件下復合泡沫的屈服強度均高于合金泡沫,表明復合泡沫能承受更大的變形量而不至于壓塌



圖2孔隙率不同的合金泡沫和復合泡沫試樣的壓縮應力-應變曲線

Fig.2Stress-strain curves of alloy foam (a) and composite foams (b) with different porosity



圖3纖維含量不同的復合泡沫的應力-應變曲線

Fig.3Stress-strain curves of composite foams with different fiber contents



圖4合金泡沫和復合泡沫試樣的吸聲系數(shù)與頻率的關系

Fig.4Relationship between sound absorption coeffic-ient and frequency of composite foams with diff-erent porosity (a) composite foam; (b) Compar-ison of 82% porosity alloy foam and composite foam



圖5纖維含量不同的復合泡沫的吸聲系數(shù)與頻率的關系

Fig.5Relationship between sound absorption coefficient and frequency of composite foam with different fiber contents



圖6合金泡沫和復合泡沫的壓縮應變

Fig.6Compressive strain of alloy foam (a) and composite foam (b)

Table 2

表2

表2孔隙率不同的泡沫試樣的屈服強度

Table 2Yield strength of composite foam with different porosity

Porosity/%7780828486
Alloy foam/MPa(1#~5#)1.901.300.800.700.50
Composite foam/MPa(6#~10#)2.151.501.631.100.70


2.2.2 纖維含量對復合泡沫壓縮性能的影響

圖3給出了孔隙率為82%、纖維含量不同的復合泡沫試樣(8#、11#~13#)的應力-應變曲線,表3列出了相應的屈服強度數(shù)據(jù) 由圖3和表3可見,復合泡沫的屈服強度隨著纖維含量的提高先提高后降低,最大屈服強度對應的纖維含量即為最佳纖維添加量 纖維含量小于5%的復合泡沫其屈服強度隨著纖維含量的提高而提高;纖維含量為5%的復合泡沫(11#)屈服強度最高(2.6 MPa),比合金泡沫(3#)提高了225%;纖維含量高于5%時屈服強度隨著纖維含量的繼續(xù)提高而逐漸降低,強化效果減弱,導致復合泡沫抵抗外力變形破壞能力降低、屈服強度下降,整體仍比合金泡沫的高

Table 3

表3

表3纖維含量不同的復合泡沫的屈服強度

Table 3Yield strength of composite foams with different fiber contents

Sample11#12#8#13#
Fiber content/%25811
Yield strength/MPa0.602.601.630.90


2.3 吸聲性能2.3.1 孔隙率對合金泡沫和復合泡沫吸聲系數(shù)的影響

圖4a給出了纖維含量為8%、孔隙率不同的復合泡沫試樣(6#~10#)的吸聲系數(shù)與頻率的關系,圖4b比較了孔隙率為82%的合金泡沫試樣(3#)和復合泡沫試樣(8#)的吸聲系數(shù),表4列出了試樣的平均吸聲系數(shù) 由圖4a可見,在1000~5800 Hz的聲頻范圍內(nèi)復合泡沫的吸聲系數(shù)隨頻率呈振蕩變化,出現(xiàn)吸聲峰和吸聲谷,并且隨著孔隙率的提高吸聲峰和吸聲谷向高頻方向移動 由表4可見,復合泡沫的平均吸聲系數(shù)隨著孔隙率的提高先增大后減小,孔隙率為82%的復合泡沫吸聲性能最佳,平均吸聲系數(shù)為0.893 圖4b和表4比較了孔隙率同為82%的復合泡沫與和合金泡沫的吸聲性能 與相同孔隙率的合金泡沫(3#)相比,復合泡沫(8#)的吸聲峰向低頻方向移動并具有更高的平均吸聲系數(shù),復合泡沫(8#)的平均吸聲系數(shù)比合金泡沫(3#)提升了10.2%,說明纖維復合能提高復合泡沫的吸聲性能

Table 4

表4

表4孔隙率不同的泡沫試樣的平均吸聲系數(shù)

Table 4Average sound absorption coefficient of composite foam with different porosity

Porosity/%7780828486
Alloy foam(1#~5#)--0.810--
Composite foam(6#~10#)0.8290.8700.8930.8880.832


2.3.2 纖維含量對復合泡沫吸聲系數(shù)的影響

圖5給出了孔隙率為82%、纖維含量不同的復合泡沫試樣(6#~10#)的吸聲系數(shù)與頻率的關系,表5列出了相應的平均吸聲系數(shù) 由圖5和表5可見,復合泡沫的吸聲曲線達到峰值頻率后,隨著纖維含量的提高吸聲峰向低頻方向移動、峰值增大,吸聲性能提高;復合泡沫的平均吸聲系數(shù)呈先增后減的趨勢 纖維含量≤5%時,雖然纖維網(wǎng)絡不完整,但是吸聲性能比合金泡沫顯著提高;纖維含量為8%的復合泡沫(8#)吸聲性能最佳,平均吸聲系數(shù)高達0.893;但是纖維含量高于8%的復合泡沫,吸聲性能隨著纖維含量的提高逐漸降低 這表明,孔隙率為82%的復合泡沫其最佳吸聲性能對應的最優(yōu)纖維添加量為8%

Table 5

表5

表5纖維含量不同的復合泡沫的平均吸聲系數(shù)

Table 5Average sound absorption coefficient of composite foam with different fiber contents

Sample3#11#12#8#13#
Fiber content/%025811
Average sound absorption coefficient0.8100.8820.8840.8930.872


3 機理分析3.1 力學性能的機理

使用COMSOL Multiphysics ?有限元軟件,對復合泡沫壓縮過程進行有限元模擬,圖6給出了合金泡沫和復合泡沫(纖維含量5%)壓縮前后的應變分布 圖6a給出了合金泡沫的應變分布,圖6b給出了復合泡沫的應變分布 在圖6a及圖6b的橢圓區(qū)域,在相同應力條件下對比了孔結構變形前(黑色)、后(藍色)的形態(tài)變化 可以看出,未加纖維區(qū)域的應變幅度較大,而有纖維區(qū)域的演變幅度較小 其原因是,復合泡沫中的纖維受載荷作用時纖維發(fā)生位移和偏轉(圖6b箭頭部分)抵耗了部分壓縮能量從而增大了對變形的抗力,使復合泡沫的應變較小

纖維含量為8%的復合泡沫不同位置(A、B、C、D、E、F、G和H)的應力分布,如圖7所示 隨機選取4個不含纖維和4個含有纖維的孔壁較薄位置進行應力分析,8個位置的應力值列于表6 結合圖7和表6可知,復合泡沫受到外力時纖維區(qū)域E、F、G、H處的應力值總體上小于無纖維區(qū)域的A、B、C、D處 這表明,纖維能將壓應力傳遞和分散,使孔壁的受力均勻化程度提高、降低了應力集中,從而提高了復合泡沫的屈服強度



圖7纖維含量為8%的復合泡沫不同位置的應力分布

Fig.7Stress of alloy composite foams with fiber content 8% at different positions

Table 6

表6

表6纖維含量為8%的復合泡沫不同位置的應力

Table 6Stress values of composite foam with fiber content of 8% at different locations

PositionABCDEFGH
Stress /×109 Pa9.268.401.984.653.090.7460.6511.31


有限元分析結果表明,在外加載荷相同的條件下復合泡沫的應變和應力均小于合金泡沫,纖維提高復合泡沫力學性能的效果顯著;由圖1可見,纖維在復合泡沫中的狀態(tài)主要有孔壁纖維(圖1c)、穿孔纖維(圖1d)和孔間纖維(圖1e) 孔壁纖維和穿孔纖維能在復合泡沫受到外力時產(chǎn)生偏轉和位移抵耗部分壓縮能量;此外,纖維還能傳遞和分散應力,降低局部應力集中;纖維還能釘扎裂紋和抑制裂紋擴散、阻礙壓縮應變并改變壓縮塌陷路徑,從而提高復合泡沫抵抗外力變形的能力[28, 32] 隨著纖維含量的提高孔壁纖維和穿孔纖維數(shù)量、纖維-基體合金結合界面增加,使纖維的增強作用逐漸增大;但是,纖維含量高于5%后,其在泡沫基體中的占比增加使合金基體對纖維的包裹程度降低,降低了纖維增強效果

3.2 吸聲性能的機理3.2.1 孔隙率的影響

在孔徑相同的條件下,隨著孔隙率的提高泡沫孔壁變薄、孔隙數(shù)量增多、多孔化程度提高和比表面積增大,入射到泡沫內(nèi)部的聲波與孔壁間的摩擦、反射和衍射程度提高,使聲能的衰減加劇 另外,孔壁上的次孔結構還能改變穿過其中的空氣流速、擾亂或改變聲波的傳播,使聲波與孔壁摩擦增多從而提高泡沫的吸聲性能 但是,由圖8可見,孔隙率由82%提高到86%使孔壁的厚度減小并使孔隙合并、孔隙增大和孔壁變薄,導致泡沫的通透性過高和比表面積減小,使聲波的傳播路徑線性化,對聲波的摩擦、粘滯和反射等效應減弱,從而使泡沫的吸聲性能下降



圖8孔隙率不同的ZL104合金泡沫的局部孔結構

Fig.8Local pore structure of ZL104 alloy foam (a) porosity 82% (b) porosity 86%

3.2.2 纖維復合的影響

纖維復合泡沫的吸聲性能可用J-A模型[33]描述:

α=1-Z-ρ0c0Z+ρ0c02(2)

Z=-jZc?cotkt(3)

Zc=K(ω)ρ(ω)(4)

k=ωρ(ω)/K(ω)(5)

ρω=ρ0α∞1+σ?jωρ0α∞1+4jα∞2ηωρ0σ2Λ2?21/2(6)

Kω=γP0/γ-γ-11+σ?jB2ωρ0α∞1+4jα∞2ηωρ0σ'2Λ'2?21/2-1(7)

Λ=1c8α∞ησ?1/2(8)

Λ'=1c'8α∞ησ?1/2=8α∞ησ'?1/2(9)

σ=8μ?d2(10)

式中α為吸聲系數(shù),Z為泡沫金屬表面阻抗,Zc為泡沫金屬的特性阻抗,k泡沫金屬中的聲波傳播常數(shù),t為泡沫金屬厚度,α∞ 為曲折因子;ρ0為空氣密度;c0為空氣的聲速;σ為靜流阻率;?為孔隙率;ω為聲波角頻率;γ為絕熱常數(shù);P0為空氣壓強;B2 為空氣的prandtl數(shù);η為空氣粘滯系數(shù);Λ為粘性特征尺度,表征粘滯損耗占主要時孔隙網(wǎng)絡的壓縮截面的尺度;Λ′為熱特征尺度,表征以熱損耗為主時孔隙內(nèi)表面積較大區(qū)域的尺度;d為孔徑;μ為表征孔壁表面粗糙度的常數(shù)

孔徑、孔隙率、聲頻和材料的厚度一定時,復合泡沫的吸聲系數(shù)主要受孔壁粗糙度μ和曲折因子α∞ 影響 纖維復合后,由于復合泡沫中纖維的含量有限,纖維對曲折度α∞ 的影響較小,因此其影響可以忽略;孔間纖維和穿孔纖維(圖1d,e)使復合泡沫孔壁表面的粗糙度μ和泡沫靜流阻率σ增大(式10),于是復合泡沫的粘性特征尺度Λ(式8)、熱特征尺度Λ'(式9)減小、有效彈性模量Kω(式7)、有效密度ρω(式6)、特性阻抗Zc減小(式4)、表面阻抗Z(式3)減小,吸聲系數(shù)α(式2)增大

纖維復合后,聲波通過孔隙時受到穿孔纖維和孔間纖維以及多孔孔壁的阻礙而發(fā)生衍射或繞流,使聲波與孔壁之間的碰撞次數(shù)增加,還可能帶動孔隙中的纖維振動,導致聲能損耗的增大 另外,增強體與基體合金之間的微塑性變形、熱膨脹失配甚至界面區(qū)域周圍的高密度位錯也能使聲能的損耗增大[26],從而使吸聲性能提高 同時,隨著纖維含量的提高,穿孔纖維和孔間纖維數(shù)量增多,泡沫的曲折度[34]、孔壁粗糙度、比表面積以及孔隙中空氣的流動阻力都隨之增大,摩擦和粘滯性損耗增大,使吸聲性能提高;但是,過高的纖維含量(高于8%)時吸聲性能下降 其原因是,纖維含量過高使纖維的團聚加劇[6]、孔隙數(shù)量減少(團聚的纖維結合鋁液阻塞孔隙)、次孔尺寸增大和孔隙合并

4 結論

(1) 采用滲流鑄造法可制備主孔徑為0.35 mm、次孔徑為0.12 mm的高孔隙率(77%~86%)ZL104合金泡沫和304不銹鋼纖維/ZL104合金復合泡沫;泡沫孔結構中的次孔分布在主孔壁上形成了多孔孔壁,復合泡沫孔結構中的纖維以孔壁纖維、孔間纖維和穿孔纖維三種狀態(tài)存在

(2) 纖維復合提高了復合泡沫的力學性能 孔隙率一定時,復合泡沫的屈服強度隨著纖維含量的提高先提高后降低;復合泡沫受力時孔壁纖維和穿孔纖維能降低應力集中,纖維以位移和偏轉等方式消耗能量而使其力學性能提高

(3) 纖維復合提高了復合泡沫的吸聲性能 在1000~5800 Hz復合泡沫的吸聲系數(shù)隨著孔隙率和纖維含量的提高先提高后降低 根據(jù)J-A模型,孔隙率、孔徑、曲折因子、聲頻及材料厚度一定的復合泡沫,纖維復合使其孔壁粗糙度提高和比表面積增大,摩擦和粘滯作用使聲波的損耗增大,多孔孔壁結構進一步增大聲能損耗從而使其吸聲性能提高

參考文獻

View Option 原文順序文獻年度倒序文中引用次數(shù)倒序被引期刊影響因子

[1]

Bai P, Yang X, Shen X, et al.

Sound absorption performance of the acoustic absorber fabricated by compression and microperforation of the porous metal

[J]. Materials & Design, 2019, 167: 107637

[本文引用: 1]

[2]

Marx J C, Robbins S J, Grady Z A, et al.

Polymer infused composite metal foam as a potential aircraft leading edge material

[J]. Applied Surface Science, 2020, 505: 144114

DOIURL

[3]

Otaru A J, Morvan H P, Kennedy A R.

Modelling and optimisation of sound absorption in replicated microcellular metals

[J]. Scripta Materialia, 2018, 150: 152

DOIURL

[4]

Shen X, Bai P, Chen L, et al.

Development of thin sound absorber by parameter optimization of multilayer compressed porous metal with rear cavity

[J]. Applied Acoustics, 2020, 159: 107071

DOIURL

[5]

Otaru A J, Morvan H P, Kennedy A R.

Numerical modelling of the sound absorption spectra for bottleneck dominated porous metallic structures

[J]. Applied Acoustics, 2019, 151: 164

DOI [本文引用: 1]

Numerical simulations are used to test the ability of several common equivalent fluid models to predict the sound absorption behaviour in porous metals with "bottleneck" type structures. Of these models, Wilson's relaxation model was found to be an excellent and overall best fit for multiple sources of experimental acoustic absorption data. Simulations, incorporating Wilson's model, were used to highlight the relative importance of key geometrical features of bottleneck structures on the normal incidence sound absorption spectrum. Simulations revealed significant improvements in absorption behaviour would be achieved, over a "benchmark" structure from the literature, by maximising the porosity (0.8) and targeting a permeability in the range of 4.0 x 10(-10) m(2). Such a modelling approach should provide a valuable tool in the optimisation of sound absorption performance and structural integrity, to meet application-specific requirements, for a genre of porous materials that offer a unique combination of acoustic absorption and load bearing capability. (C) 2019 Elsevier Ltd.

[6]

Wang Y, Zuo X, Kong D, et al.

A comparative analysis of sound absorption performance of ZL104/aluminum fiber composite foam

[J]. J. Mater. Res., 2019, 34(21): 3717

DOIURL [本文引用: 3]

[7]

Kim S Y, Park S H, Um Y S, et al.

Sound absorption properties of Al foam

[J]. Materials Science Forum, 2005, 468: 486

[本文引用: 1]

[8]

Haward S J, Odell J A, Li Z, et al.

The rheology of polymer solution elastic strands in extensional flow

[J]. Rheol. Acta., 2010, 49(7): 781

DOIURL

[9]

Zhai W, Yu X, Song X, et al.

Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique

[J]. Materials & Design, 2018, 137: 108

[10]

Liu P S, Qing H B, Hou H L.

Primary investigation on sound absorption performance of highly porous titanium foams

[J]. Materials & Design, 2015, 85(Nov.15) : 275

[11]

Bai P, Shen X, Zhang X, et al.

Influences of compression ratios on sound absorption performance of porous nickel-iron alloy

[J]. Metals, 2018, 8(7): 539

DOIURL

The improvement of sound absorption performance of porous metal is a focus of research in the field of noise reduction. Influences of compression ratios on sound absorption performance of a porous nickel–iron (Ni–Fe) alloy were investigated. The samples were compressed with ratios from 10% to 80% at an interval of 10%. Based on the standing wave method, sound absorption coefficients of compressed samples with different thicknesses were obtained. It could be found that with the same compression ratio, sound absorption performance was improved with the increase of thickness. Based on the modified Johnson–Allard model with a correction factor, the sound absorption coefficient of the porous Ni–Fe with a thickness of 20 mm for different compression ratios was derived, whose aim was to quantificationally analyze influences of the compression ratio. The results indicated that the sample with a compression ratio of 70% exhibited optimal sound absorption performance, and its average sound absorption coefficient reached 88.97% in a frequency range of 1000–6000 Hz. Meanwhile, the section morphologies of compressed samples were investigated by a scanning electron microscope, which studied the sound absorption performance by analyzing structures of the porous Ni–Fe samples with different compression ratios. The obtained achievements will promote the application of the porous Ni–Fe alloy in the field of acoustics.

[12]

Liu P S, Qing H B.

A Spherical-pore foamed titanium alloy with high porosity

[J]. Chinese Journal of Materials Research, 2015, 29(5): 346

[本文引用: 1]

劉培生, 頃淮斌.

一種具有球形孔隙的高孔率泡沫鈦合金

[J]. 材料研究學報, 2015, 29(5): 346

[本文引用: 1]

[13]

Jin W, Liu J, Wang Z, et al.

Sound absorption characteristics of aluminum foams treated by plasma electrolytic oxidation

[J]. Materials (Basel), 2015, 8(11): 7511

DOIURL [本文引用: 1]

[14]

Navacerrada M A, Fernández P, Díaz C, et al.

Thermal and acoustic properties of aluminium foams manufactured by the infiltration process

[J]. Applied Acoustics, 2013, 74(4): 496

DOIURL

[15]

Ao Q B, Wang J Z, Tang H P, et al.

Sound absorption characteristics and structure optimization of porous metal fibrous materials

[J]. Rare Metal Materials and Engineering, 2015, 44(11): 2646

DOIURL

[16]

Perrot C, Chevillotte F, Panneton R.

Bottom-up approach for microstructure optimization of sound absorbing materials

[J]. J. Acoust. Soc. Am., 2008, 124(2): 940

DOIPMID

Results from a numerical study examining micro-/macrorelations linking local geometry parameters to sound absorption properties are presented. For a hexagonal structure of solid fibers, the porosity phi, the thermal characteristic length Lambda('), the static viscous permeability k(0), the tortuosity alpha(infinity), the viscous characteristic length Lambda, and the sound absorption coefficient are computed. Numerical solutions of the steady Stokes and electrical equations are employed to provide k(0), alpha(infinity), and Lambda. Hybrid estimates based on direct numerical evaluation of phi, Lambda('), k(0), alpha(infinity), Lambda, and the analytical model derived by Johnson, Allard, and Champoux are used to relate varying (i) throat size, (ii) pore size, and (iii) fibers' cross-section shapes to the sound absorption spectrum. The result of this paper tends to demonstrate the important effect of throat size in the sound absorption level, cell size in the sound absorption frequency selectivity, and fibers' cross-section shape in the porous material weight reduction. In a hexagonal porous structure with solid fibers, the sound absorption level will tend to be maximized with a 48+/-10 microm throat size corresponding to an intermediate resistivity, a 13+/-8 microm fiber radius associated with relatively small interfiber distances, and convex triangular cross-section shape fibers allowing weight reduction.

[17]

Yang X H, Ren S W, Wang W B, et al.

A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open cells

[J]. Composites Science and Technology, 2015, 118:276

DOIURL

[18]

Guan D, Wu J H, Jing L.

A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set

[J]. Journal of Alloys and Compounds, 2015, 626: 29

DOIURL

[19]

Soni B, Biswas S.

Effects of cell parameters at low strain rates on the mechanical properties of metallic foams of Al and 7075-T6 alloy processed by pressurized infiltration casting method

[J]. J. Mater. Res., 2018, 33(20): 3418

DOIURL [本文引用: 1]

[20]

Yu X, Lu Z, Zhai W.

Enhancing the flow resistance and sound absorption of open-cell metallic foams by creating partially-open windows

[J]. Acta Materialia, 2021, 206: 116666

DOIURL [本文引用: 1]

[21]

Wu J, Cheng H F, Huang X M, et al.

Effects of modification and heat treatment on energyabsorption capacities of aluminum alloy foams

[J]. Special Casting & Nonferrous Alloys, 2011, 31(4): 373

[本文引用: 2]

吳 進, 程和法, 黃笑梅 等.

變質(zhì)處理及熱處理對泡沫鋁合金壓縮吸能性的影響

[J]. 特種鑄造及有色合金, 2011, 31(4): 373

[本文引用: 2]

[22]

Wang H, Zhou X Y, Long B, et al.

Sound absorption properties of open-cells aluminum foams prepared by infiltration casting methods

[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 1034

[本文引用: 1]

王 輝, 周向陽, 龍 波 等.

滲流鑄造法制備的開孔泡沫鋁的聲學性能

[J]. 中國有色金屬學報, 2013, 23(4): 1034

[本文引用: 1]

[23]

Liu M, Cheng H F, Huang X M, et al.

Preparation of low density open-cell aluminum foam by soluble plaster mould

[J]. Special Casting & Nonferrous Alloys, 2010, 30(5): 462

[本文引用: 1]

劉 銘, 程和法, 黃笑梅 等.

用可溶石膏型預制塊制備低密度開孔泡沫鋁

[J]. 特種鑄造及有色合金, 2010, 30(5): 462

[本文引用: 1]

[24]

Alt?nk?k N.

Investigation of mechanical and machinability properties of Al2O3/SiCp reinforced Al-based composite fabricated by stir cast technique

[J]. J. Porous. Mater., 2015, 22(6): 1643

DOIURL [本文引用: 2]

[25]

Guo C, Zou T, Shi C, et al.

Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2O4 whiskers

[J]. Materials Science and Engineering: A, 2015, 645: 1

DOIURL [本文引用: 1]

[26]

Wu J, Li C, Wang D, et al.

Damping and sound absorption properties of particle reinforced Al matrix composite foams

[J]. Composites Science and Technology, 2003, 63(3-4): 569

DOIURL [本文引用: 1]

[27]

Zhang J, Jie J, Lu Y, et al.

Fabrication of carbon fibers reinforced Al-matrix composites in pulsed magnetic field

[J]. J. Mater. Res. Technol., 2021, 11: 197

DOIURL [本文引用: 1]

[28]

Mu Y, Yao G, Cao Z, et al.

Strain-rate effects on the compressive response of closed-cell copper-coated carbon fiber/aluminum composite foam

[J]. Scripta Materialia, 2011, 64(1): 61

DOIURL [本文引用: 2]

[29]

Huang Y, Ouyang Q, Zhang D, et al.

Carbon materials reinforced aluminum composites: a review

[J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27(5): 775

DOIURL

[30]

Singh B B, Balasubramanian M.

Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites

[J]. Journal of Materials Processing Technology, 2009, 209(4): 2104

DOIURL

[31]

Pan L W, Rao D W, Yang C, et al.

Research progress on preparation methods and energy absorption properties of hollow particles/metal matrix syntactic foams

[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1370

[本文引用: 1]

潘利文, 饒德旺, 楊 超 等.

空心微珠/金屬基復合泡沫制備方法與吸能性能的研究進展

[J]. 復合材料學報, 2020, 37(6): 1370

[本文引用: 1]

[32]

Lee S, Kim G, Kim H, et al.

Impact resistance, flexural and tensile properties of amorphous metallic fiber-reinforced cementitious composites according to fiber length

[J]. Constr. Build. Mater., 2021, 271: 121872

DOIURL [本文引用: 1]

[33]

Allard J F, Atalla N. Propagation of Sound in Porous Media: Modelling sound absorbing materials 2nd Ed. [M].

Hoboken:

A John Wiley and Sons, 2009: 45

[本文引用: 1]

[34]

Kalauni K, Pawar S J.

A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials

[J]. J. Porous Mater., 2019, 26(6): 1795

DOI [本文引用: 1]

Sound absorption performance of the acoustic absorber fabricated by compression and microperforation of the porous metal

1

2019

聲明:
“304不銹鋼纖維/ZL104鋁合金復合泡沫的孔結構、力學、吸聲性能及其機理” 該技術專利(論文)所有權利歸屬于技術(論文)所有人。僅供學習研究,如用于商業(yè)用途,請聯(lián)系該技術所有人。
我是此專利(論文)的發(fā)明人(作者)
分享 0
         
舉報 0
收藏 0
反對 0
點贊 0
全國熱門有色金屬技術推薦
展開更多 +

 

中冶有色技術平臺微信公眾號
了解更多信息請您掃碼關注官方微信
中冶有色技術平臺微信公眾號中冶有色技術平臺

最新更新技術

報名參會
更多+

報告下載

第二屆中國微細粒礦物選礦技術大會
推廣

熱門技術
更多+

衡水宏運壓濾機有限公司
宣傳
環(huán)磨科技控股(集團)有限公司
宣傳

發(fā)布

在線客服

公眾號

電話

頂部
咨詢電話:
010-88793500-807
專利人/作者信息登記