鎳基單晶高溫合金具有優(yōu)異的使役性能,是制造先進(jìn)航空發(fā)動(dòng)機(jī)渦輪和導(dǎo)向葉片的
關(guān)鍵材料[1,2]
但是,服役溫度的不斷提高和苛刻的服役環(huán)境使葉片發(fā)生高溫氧化和熱腐蝕損傷[3,4]
為了解決這一問(wèn)題,通常將高溫防護(hù)涂層涂覆到葉片等部件上,以減緩葉片基體的退化[5~7]
Pt-Al涂層可明顯提高合金的抗氧化和熱腐蝕性能,廣泛用于航空發(fā)動(dòng)機(jī)單晶渦輪葉片
在長(zhǎng)時(shí)高溫服役過(guò)程中,單晶渦輪葉片的涂層/基體間化學(xué)組分差異以及“熱-力耦合”、互擴(kuò)散反應(yīng)等因素,使基體、涂層及基體/涂層界面發(fā)生組織退化和性能降低[8~11]
將其在高溫下長(zhǎng)時(shí)熱暴露,可較好地模擬葉片材料組織退化
研究表明[12, 13],隨著熱暴露時(shí)間的延長(zhǎng)合金基體中的γ'相遵循Ostwald熟化理論發(fā)生粗化
隨著熱暴露溫度的提高γ'相粗化越發(fā)嚴(yán)重,甚至形成筏排化
另外,在長(zhǎng)時(shí)熱暴露過(guò)程中γ基體可能析出TCP相和碳化物退化或分解[14~16]
Yuan等[17~20]研究了不同熱暴露時(shí)間、溫度及熱力耦合后涂層體系的組織演變
結(jié)果表明:Al元素的向內(nèi)擴(kuò)散和Ni元素的向外流失使共格排列的γ/γ'相結(jié)構(gòu)遭到破壞并促進(jìn)TCP相的生成,降低了合金的高溫力學(xué)性能
為了模擬渦輪葉片的服役工況,預(yù)先對(duì)含涂層試樣進(jìn)行熱暴露然后開(kāi)展蠕變?cè)囼?yàn)
Alam等[11,21,22]發(fā)現(xiàn),隨著熱暴露時(shí)間的延長(zhǎng)涂層體系發(fā)生退化,裂紋在界面萌生并沿γ'/β相界、孔洞等缺陷“雙向擴(kuò)展”,使合金的蠕變性能降低
Han等[23,24]針探究了含滲鋁涂層的K403鎳基高溫合金渦輪葉片的服役損傷機(jī)理,發(fā)現(xiàn)涂層在高溫下長(zhǎng)時(shí)服役過(guò)程中發(fā)生組織退化、產(chǎn)生表面損傷和孔洞
多種損傷的積累加速涂層的剝落,惡化了體系的服役表現(xiàn)
但是,目前針對(duì)長(zhǎng)時(shí)服役后Pt-Al涂層/單晶高溫合金體系的研究,較多的是圍繞基體組織退化、涂層退化和性能惡化,關(guān)于服役溫度對(duì)涂層/基體界面演化的影響的研究還比較少[25~27]
鑒于此,本文研究在不同溫度(850℃、1000℃)下抗熱腐蝕單晶高溫合金/Pt-Al涂層體系的長(zhǎng)時(shí)服役行為,以及界面及界面附近的微觀組織演化規(guī)律,以深入了解微觀結(jié)構(gòu)演變與互擴(kuò)散反應(yīng)之間的關(guān)聯(lián)
1 實(shí)驗(yàn)方法1.1 實(shí)驗(yàn)用材料
實(shí)驗(yàn)用抗熱腐蝕鎳基單晶高溫合金DD413的名義成分,列于表1
用真空感應(yīng)爐熔煉母合金,用傳統(tǒng)高速凝固Bridgman法(High Rate Solidification,HRS)制備單晶試棒
用電子背散射衍射技術(shù)(Electron Backscattered Diffraction,EBSD)確定單晶試棒的晶體取向,其晶體取向與<001>生長(zhǎng)方向的取向差均小于10°
Table 1
表1
表1DD413合金名義成分(%,質(zhì)量分?jǐn)?shù))
Table 1Nominal composition of DD413 alloy (mass fraction, %)
Alloy
|
C
|
Cr
|
Co
|
W
|
Mo
|
Al
|
Ti
|
Ta
|
Ni
|
DD413
|
0.07
|
12
|
9
|
3.8
|
1.9
|
3.6
|
4.1
|
5
|
Bal.
|
按照1220℃/2 h+1250℃/4 h(Air cooling;AC)+1080℃/4 h(AC) 的制度進(jìn)行熱處理,然后用電火花線切割機(jī)沿<001>方向?qū)⒃嚢羟谐芍睆綖?4 mm、厚度為2 mm的試片(試片表面的法線為<001>生長(zhǎng)方向)
將試片進(jìn)行倒角(R=1)處理后,用800#砂紙進(jìn)行磨拋
1.2 涂層的制備
將試片吹砂和清洗后用電鍍法在試片表面沉積一層厚度約為4 μm的Pt層,然后放入VGQ-80型真空爐進(jìn)行1080℃/4 h的退火處理
退火處理后,用高溫低活度滲鋁工藝進(jìn)行滲鋁,滲鋁劑為Fe-Al粉和活化劑NH4Cl的混合粉末
將爐腔抽成真空狀態(tài)后充入氬氣,反復(fù)幾次確保將爐腔內(nèi)的空氣排盡后即可加熱,滲鋁結(jié)束后試樣隨爐自然冷卻至室溫
1.3 長(zhǎng)期熱暴露實(shí)驗(yàn)
將試片裝入坩堝并置于馬弗爐中,分別在 850℃、1000℃進(jìn)行長(zhǎng)期熱暴露實(shí)驗(yàn),熱暴露時(shí)間分別為50 h、100 h、300 h、600 h、1800 h、3600 h
在每個(gè)時(shí)間段各取3個(gè)樣品用于觀察顯微組織
1.4 微觀組織表征
用X'Pert PRO型X射線衍射儀(XRD)進(jìn)行分析涂層的物相
用配有能譜儀(EDS)和背散射電子(BSE)的Tescan MIRA 3型掃描電鏡(SEM),觀察金相樣品的微觀形貌、組織和成分(腐蝕液為4 g CuSO4+12 mL HCl+20 mL H2O)
用FEI T20型透射電鏡并使用選區(qū)衍射技術(shù)(SAD)鑒定互擴(kuò)散區(qū)及二次反應(yīng)區(qū)中的物相
透射樣品的制備:沿<001>方向切取厚度約為500 μm的薄片樣品(如圖1所示),依次將基體面和涂層面研磨(為避免研磨導(dǎo)致涂層脫落,僅針對(duì)涂層面采用細(xì)砂紙進(jìn)行簡(jiǎn)單研磨)至約50 μm(使互擴(kuò)散區(qū)/二次反應(yīng)區(qū)位于樣品的中間層),然后將樣品沖成直徑為3 mm的圓片
用Tenupol-5電解雙噴減薄儀對(duì)樣品進(jìn)行減薄,以此獲得易于觀察的薄區(qū)
(雙噴的參數(shù)為:電壓20 V,雙噴液為10%高氯酸+90%酒精溶液,溫度為-20℃~-25℃,冷卻介質(zhì)為液氮)
圖1涂層/基體截面的示意圖
Fig.1Diagram of cross section of coating/substrate
1.5 圖像分析
使用Image Pro Plus圖像分析軟件測(cè)量互擴(kuò)散區(qū)、二次反應(yīng)區(qū)的厚度
為確保數(shù)據(jù)的準(zhǔn)確性,選取3張視場(chǎng)大小相同SEM圖像進(jìn)行厚度測(cè)量,且測(cè)量點(diǎn)不少于50個(gè)
統(tǒng)計(jì)互擴(kuò)散區(qū)中的高亮粒子的尺寸及體積分?jǐn)?shù),視場(chǎng)大小相同且每張圖像中的粒子數(shù)量不少于200個(gè)
因?yàn)槲龀鱿喽酁椴灰?guī)則圖形,借助等效直徑
Req=S/π(1)
衡量不規(guī)則形狀析出相的演變規(guī)律[28]
式中Req為粒子等效直徑(Equivalent diameter),S為粒子面積
2 結(jié)果和討論2.1 Pt-Al涂層原始截面的形貌
圖2給出了熱暴露前DD413合金表面Pt-Al涂層的XRD譜
由圖2可見(jiàn),涂層由單相β-(Ni,Pt)Al相組成
圖3a給出了DD413合金/Pt-Al涂層的截面形貌,可見(jiàn)涂層分為兩個(gè)區(qū)域:外層(Outer coating,OC)由單一β相構(gòu)成,厚度為(20±1 μm);內(nèi)層為互擴(kuò)散區(qū)(Interdiffusion of zone,IDZ),以β-(Ni,Pt)Al相為基,彌散分布著析出相(富Cr、Ta、W、Mo等),厚度為(14±0.5 μm),主要受互擴(kuò)散反應(yīng)的影響,在涂層/基體間生成的一個(gè)連續(xù)區(qū)域[29](如圖3a所標(biāo)注)
圖3b給出了涂層區(qū)域紅色方框的EDS定量分析結(jié)果:涂層的成分為Ni-35.3Pt-16.1Al-4.6Cr-4.2Co(質(zhì)量分?jǐn)?shù),%)
圖2原始態(tài)Pt-Al涂層的XRD譜
Fig.2XRD diffraction pattern of original Pt-Al coating
圖3原始態(tài)Pt-Al涂層/合金截面的形貌和形貌中紅色方框?qū)?yīng)EDS能譜
Fig.3(a) Cross section morphology of original Pt-Al coating/Alloy and (b) EDS energy spectrum corresponding to red box in (a)
圖4a給出了DD413合金/Pt-Al涂層蝕刻后的BSE圖
受蝕刻的影響,涂層組織中出現(xiàn)些許裂紋
可以看出,在IDZ區(qū)下方出現(xiàn)零散分布的基體擴(kuò)散區(qū)(Substrate diffusion zone,SDZ)(圖4a虛線所示)
此外,靠近互擴(kuò)散區(qū)的基體γ'相發(fā)生了筏化(筏化方向平行于試樣表面),其厚度為5±0.8 μm,如圖4b所示
γ'形筏主要是預(yù)先的噴砂處理和后續(xù)的涂層熱加所致[29]
遠(yuǎn)離涂層基體內(nèi)部的γ'相為正方體結(jié)構(gòu),如圖4c所示
互擴(kuò)散區(qū)中有兩種不同襯度的相析出,細(xì)節(jié)如圖4a中的插圖所示;具體成分如圖4d、e所示,較亮的析出相為富Ta和Ti的MC碳化物,另一種較暗的相為富Cr相
SAD分析結(jié)果(圖5)表明,富Cr相為σ-TCP相
使用圖像分析軟件統(tǒng)計(jì)和計(jì)算了互擴(kuò)散區(qū)中MC碳化物的尺寸和體積分?jǐn)?shù)(σ-TCP相與基體襯度差異較小,因此沒(méi)有統(tǒng)計(jì)),結(jié)果表明:MC碳化物的平均尺寸為(0.13±0.006) μm,體積分?jǐn)?shù)為(7.3±0.7)%
圖4Pt-Al涂層/合金截面蝕刻后的BSE圖像和EDS能譜
Fig.4BSE images and EDS spectrum of Pt-Al coating/alloy section after etched: (a) sectional image of Pt-Al coating; (b, c) enlarged image of coating/substrate interface image of γ/γ'; (d, e) are the corresponding MC and σ-TCP EDS spectra in (a)
圖5Pt-Al涂層/合金的TEM圖像及選區(qū)衍射花樣(SAD)
Fig.5TEM image and selected area diffraction pattern (SAD) of Pt-Al coating/alloy (a) TEM image of interdiffusion region of original coating; (A) and (B) selected area diffraction (SAD) corresponding to (a)
2.2 涂層/基體界面微觀組織的演化
涂層-基體間的化學(xué)組分明顯不同,在長(zhǎng)時(shí)熱暴露過(guò)程中持續(xù)進(jìn)行的互擴(kuò)散,誘發(fā)了界面附近微觀組織的演化
隨著熱暴露時(shí)間的延長(zhǎng)和熱暴露溫度的提高,涂層/基體界面微觀結(jié)構(gòu)的演化愈加劇烈
在此,分析幾個(gè)關(guān)鍵組織損傷參量(IDZ、SRZ (Secondary reaction of zone,SRZ)),用厚度和富集難熔元素析出相的尺寸、體積分?jǐn)?shù)量化表征界面微觀組織的演化規(guī)律
2.3 在850℃熱暴露界面微觀組織的演化
圖6a給出了在850℃熱暴露50 h后DD413合金/Pt-Al涂層的截面BSE圖像
與原始態(tài)組織(圖3a)比較,熱暴露50 h后互擴(kuò)散區(qū)內(nèi)MC碳化物的尺寸略微增大(約為0.17 μm),其體積分?jǐn)?shù)由7.3%增大到8.7%;溫度和互擴(kuò)散等因素的影響使σ-TCP相也發(fā)生了不同程度的溶解或長(zhǎng)大
由于其與基體相襯度差異較小,無(wú)法量化表征其演化規(guī)律
受涂層/基體互擴(kuò)散反應(yīng)的影響,也觀察到SRZ,其形成在互擴(kuò)散區(qū)下方,由γ相、γ'相、TCP相及三相轉(zhuǎn)換產(chǎn)物所形成的區(qū)域[30],如圖8所示
此時(shí),IDZ、SRZ分別增大到17.7 μm和11.1 μm
同時(shí),MC相的體積分?jǐn)?shù)和尺寸變化可能受到噴砂產(chǎn)生的表面再結(jié)晶的影響——晶界和位錯(cuò)為(Ta、Ti)元素的擴(kuò)散提供了通道[31],涂層/基體間的化學(xué)勢(shì)梯度也使互擴(kuò)散區(qū)中MC碳化物的長(zhǎng)大
圖6在850℃熱暴露不同時(shí)間后Pt-Al涂層/合金截面的BSE圖像
Fig.6BSE images of Pt-Al coating/alloy section after long-term thermal exposure at 850℃ for different time (a) 50 h; (b)600 h; (c) 1800 h; (d) 3600 h
圖7850℃熱暴露3600 h后IDZ中的塊狀析出相的TEM圖像及選區(qū)衍射花樣(SAD)
Fig.7TEM image and selected area diffraction patterns (SAD) of block precipitated in IDZ after heat exposure at 850℃ for 3600 h
圖8在850℃熱暴露不同時(shí)間后蝕刻的Pt-Al涂層/合金截面的BSE圖像
Fig.8BSE images of Pt Al coating/alloy section etched after thermal exposure at 850℃ for different time (a) 50 h; (b) 600 h; (c) 1800 h; (d) 3600 h
圖6b給出了在850℃熱暴露600 h后DD413合金/Pt-Al涂層的截面BSE圖像
對(duì)比結(jié)果表明,互擴(kuò)散區(qū)內(nèi)大顆粒MC的尺寸進(jìn)一步增大,而小顆粒MC卻溶解了,其平均尺寸增長(zhǎng)至0.24 μm,體積分?jǐn)?shù)降至5.5%;尺寸較小的σ-TCP相也在互擴(kuò)散區(qū)中溶解
IDZ和SRZ分別增至22.9 μm和27.9 μm
MC碳化物和σ相尺寸的變化不僅受涂層/基體間化學(xué)梯度的影響[32],還受析出相曲率的影響[33],使大顆粒析出相進(jìn)一步長(zhǎng)大和一部分小顆粒析出相在互擴(kuò)散區(qū)中溶解
當(dāng)熱暴露時(shí)間延長(zhǎng)至1800 h(如圖6c所示)時(shí),伴隨著互擴(kuò)散反應(yīng)的進(jìn)行MC碳化物逐漸在互擴(kuò)散區(qū)中溶解,尺寸減小至0.15 μm,體積分?jǐn)?shù)降至4.7%
此時(shí)IDZ的厚度趨于穩(wěn)定(21.8±1.3) μm,SRZ繼續(xù)增長(zhǎng)至34.5 μm
當(dāng)熱暴露3600 h時(shí)只有少量的MC碳化物分布在互擴(kuò)散區(qū)(3.1±0.3)%,且在界面組織中生成了新的塊狀析出相(如圖6d黑色方框所示,該析出相富集Cr元素;SAD鑒定該相為M23C6相,如圖7所示);SRZ則繼續(xù)增長(zhǎng),厚度達(dá)到46.7 μm
值得注意的是,隨著熱暴露時(shí)間延長(zhǎng)到3600 h,伴隨MC碳化物與σ-TCP相的溶解M23C6碳化物也在界面組織中析出
文獻(xiàn)[34]指出,隨著熱暴露時(shí)間的延長(zhǎng)高溫合金基體中碳化物發(fā)生演變MC+γ→M23C6(或M6C)+ γ',但是這種反應(yīng)在涂層組織中難以發(fā)生
由此可以推斷,MC碳化物的溶解和M23C6的析出可能受到涂層由β→γ/γ'的相變(如圖13a)和σ-TCP相溶解的影響
隨著γ'相體積分?jǐn)?shù)的增大更多的γ'相形成元素(Ta、Ti)逐漸被吸收[35]而使MC碳化物溶解,而σ-TCP的溶解釋放出的γ相形成元素Cr卻被拒絕在外
同時(shí),C元素在晶界上擴(kuò)散更快和C原子與Cr原子之間結(jié)合能力較強(qiáng)[37],促進(jìn)了M23C6的生成
圖9在850℃熱暴露3600 h后的TEM圖像、選區(qū)衍射花樣(SAD)和針狀相對(duì)應(yīng)的EDS能譜
Fig.9(a) TEM image after thermal exposure at 850℃ for 3600 h and selected area diffraction pattern (SAD), (b) EDS energy spectrum corresponding to needle phase in (a)
圖10在1000℃長(zhǎng)時(shí)熱暴露不同時(shí)間后Pt-Al涂層/合金截面的BSE圖像:
Fig.10BSE images of Pt-Al coating/alloy section after long-term thermal exposure at 1000℃ for different time (a) 50 h; (b)600 h; (c)1800 h; (d) 3600 h
圖11在850℃和1000℃熱暴露后IDZ、SRZ厚度的演化趨勢(shì)
Fig.11Evolution trend of thickness of IDZ (a) and SRZ (b) after 850℃ and 1000℃ thermal exposure
圖12在850℃和1000℃熱暴露后IDZ中MC碳化物的演化趨勢(shì)
Fig.12Evolution trend of MC carbide in IDZ after thermal exposure at 850℃ and 1000℃ (a) Average size of MC carbide; (b) Volume fraction of MC carbide
圖13長(zhǎng)期熱暴露后Pt-Al/DD413體系的XRD譜
Fig.13XRD pattern of Pt-Al / DD413 system after long-term thermal exposure (a) 850℃/0-3600 h; (b) 1000℃/0-3600 h
另外,在長(zhǎng)期熱暴露過(guò)程中界面附近及二次反應(yīng)區(qū)中的γ/γ'微觀結(jié)構(gòu)也受到了明顯的影響
為了更清楚的了解涂層/基體界面演化情況,對(duì)DD413合金/Pt-Al涂層截面進(jìn)行了蝕刻
圖8給出了蝕刻后DD413合金/Pt-Al涂層截面的BSE圖像及近界面附近基體γ/γ'相的局部放大圖
與標(biāo)準(zhǔn)熱處理態(tài)γ/γ'組織相比表明,隨著熱暴露時(shí)間的延長(zhǎng)界面下方立方狀γ'相依次發(fā)生球化、獨(dú)立γ'相粒子相互聯(lián)接呈筏形轉(zhuǎn)變(筏化方向垂直于試樣表面)以及基體通道寬度進(jìn)一步增大等演化,如圖8a~d中的插圖所示
同時(shí),在長(zhǎng)時(shí)熱暴露過(guò)程中難熔元素出現(xiàn)局部過(guò)飽和,針狀相在界面下方析出
圖9給出了針狀TCP相的TEM圖像、選區(qū)衍射花樣(SAD)和EDS能譜,分析結(jié)果表明針狀相為σ相
對(duì)比分析發(fā)現(xiàn),隨著熱暴露時(shí)間的延長(zhǎng)σ析出相的含量明顯提高
2.4 在1000℃熱暴露界面微觀組織的演化
圖10a給出了在1000℃熱暴露50 h后DD413合金/Pt-Al涂層的截面BSE圖像
與標(biāo)準(zhǔn)態(tài)(圖3a)相比,MC碳化物的尺寸增至0.26 μm,體積數(shù)上升至7.5%,σ-TCP相彌散分布在互擴(kuò)散區(qū)中;IDZ和SRZ分別增長(zhǎng)至20.4 μm和14.9 μm
圖10b給出了在1000℃熱暴露600 h后DD413合金/Pt-Al涂層的截面BSE圖像
可以看出,部分MC碳化物溶解在互擴(kuò)散區(qū)中,其體積分?jǐn)?shù)只占4.5%,MC碳化物的尺寸也減小到0.21 μm,伴隨著部分σ-TCP相的溶解M23C6也在互擴(kuò)散區(qū)中析出
IDZ和SRZ分別增長(zhǎng)到24.8 μm和37.1 μm
如圖10c所示,當(dāng)熱暴露時(shí)間持續(xù)到1800h時(shí) MC碳化物只占1.2%(此時(shí),MC碳化物幾乎全部溶解在互擴(kuò)散區(qū)中,存在較大的計(jì)算誤差
所以,在此之后沒(méi)有給出與MC碳化物尺寸相關(guān)的數(shù)據(jù))
除了C碳化物,在互擴(kuò)散區(qū)中還發(fā)現(xiàn)尺寸較大的TCP相和M23C6碳化物(分別在圖10c中標(biāo)出);IDZ和SRZ的厚度分別為23.5 μm和49.3 μm
圖10d給出了在1000℃熱暴露3600 h后DD413合金/Pt-Al涂層的截面BSE圖像
可以看出,β→γ/γ'相變產(chǎn)生的體積收縮使涂層表面出現(xiàn)起伏,Al損耗比在850℃熱暴露更加嚴(yán)重;此時(shí)的互擴(kuò)散區(qū)以γ/γ'為基,彌散分布著MC、M23C6碳化物和σ-TCP
IDZ和SRZ的厚度分別為23.1 μm和62.3 μm
與在850℃熱暴露相比,在1000℃熱暴露時(shí)合金/涂層界面微觀組織的演化更快
在1000℃長(zhǎng)時(shí)熱暴露使互擴(kuò)散區(qū)的厚度和二次反應(yīng)的厚度都比在850℃熱暴露時(shí)大
對(duì)比分析發(fā)現(xiàn),MC碳化物的溶解和M23C6的析出明顯加速;同時(shí),在1000℃熱暴露時(shí)TCP相的尺寸也比在850℃熱暴露時(shí)略大,如圖11、12所示
出現(xiàn)以上現(xiàn)象的原因是:一方面,β-(Ni,Pt)Al向γ/γ'相的轉(zhuǎn)變加速,如圖13b所示
互擴(kuò)散區(qū)中Ta、Ti元素被γ'相吸收[35]使MC碳化物溶解
同時(shí),σ-TCP相在高溫下不穩(wěn)定而易發(fā)生分解,閑置下來(lái)的Cr與C結(jié)合也加快了M23C6的形成[36],如圖10b所示
另一方面,高溫使大量的Al元素?cái)U(kuò)散進(jìn)入基體,Ni元素向外流失使反應(yīng)
γ+[Al]→γ'(2)
γ→[Ni]+γ'(3)
更加劇烈
這使更多的γ'相在界面下方生成,而γ相中元素的擴(kuò)散速率比γ'相的擴(kuò)散速率高1-2數(shù)量級(jí)[37],因此γ'相限制了元素的向外擴(kuò)散
同時(shí),γ'相比Cr、Co、Mo、W等難熔元素的溶解性較差,使更多的難熔元素在界面偏聚并以針狀相的形式在界面下方析出
文獻(xiàn)[38]指出,針狀TCP相限制了基體中元素向外擴(kuò)散,減少了難熔元素在互擴(kuò)散區(qū)中的聚集
雖然γ'相和TCP相在一定程度上限制了基體元素向外流失,但是與Ta、Ti等元素相比,來(lái)自基體深處的Ni更容易向外補(bǔ)充[10]
Ni元素不斷向外擴(kuò)散,使難熔元素在互擴(kuò)散區(qū)中的局部溶解能力提高
因此,在1000℃長(zhǎng)期熱暴露過(guò)程中,涂層相變和涂層/基體的互擴(kuò)散加速了互擴(kuò)散區(qū)中MC碳化物的溶解和M23C6碳化物的析出
與在850℃熱暴露相比,在1000℃長(zhǎng)時(shí)熱暴露后涂層和界面的損傷隨著熱暴露時(shí)間的延長(zhǎng)愈加嚴(yán)重
圖14a~d分別給出了蝕刻后在1000℃熱暴露50 h、600 h、1800 h、3600 h后Pt-Al涂層的截面圖像和界面γ/γ'相的放大圖像
可以看出,界面下方的γ'相互相聯(lián)接形成筏化結(jié)構(gòu),但是仍存在部分獨(dú)立的立方狀γ'相
隨著熱暴露時(shí)間的延長(zhǎng)筏化層不斷深入,如圖14a~d中的插圖所示
大量的難熔元素釋放出來(lái)生成了TCP相,SAD分析結(jié)果表明針狀相為σ-TCP,如圖15所示
另外,在高溫下隨著熱暴露時(shí)間的延長(zhǎng)氧化反應(yīng)和互擴(kuò)散反應(yīng)持續(xù)進(jìn)行,使Al元素的損耗加劇和發(fā)生β-(Ni,Pt)Al→γ'→γ轉(zhuǎn)變
隨著界面組織中γ相體積分?jǐn)?shù)的增大γ'相形成元素Ta和Ti則處于游離狀態(tài),加之C較快的擴(kuò)散使其與Ta、Ti重新結(jié)合并以二次MC的形式在界面組織中析出,如圖15b~d界面組織中的高亮相
圖14Pt-Al涂層/合金截面蝕刻后在1000℃長(zhǎng)時(shí)熱暴露不同時(shí)間后的BSE圖像
Fig.14BSE images of Pt-Al coating/alloy section after long-term thermal exposure at 1000℃ for different time (a) 50 h; (b)600 h; (c) 1800 h; (d) 3600 h
圖15在1000℃/3600 h后的TEM形貌、選區(qū)衍射花樣(SAD)和與針狀相對(duì)應(yīng)的EDS能譜
Fig.15(a) 1000℃/3600 h, TEM image and selected area diffraction pattern (SAD) and (b) EDS energy spectrum corresponding to needle phase in (a)
在不同溫度下近涂層γ/γ'相也發(fā)生了不同程度的退化,其原因是:(1)在高溫下合金基體(FCC)的熱膨脹系數(shù)略大于β-(Ni,Pt)Al涂層(BCC),噴砂處理使界面應(yīng)變能無(wú)法釋放,涂層相對(duì)基體產(chǎn)生了平行于界面的壓應(yīng)力[32],使界面下方的γ'相形筏
(2) 在1000℃熱暴露時(shí)涂層中的Al與O2的劇烈反應(yīng)支撐了表面氧化層的生成,與在850℃熱暴露相比,由β到γ/γ'的轉(zhuǎn)變明顯加速,如圖13所示
而β相的晶粒尺寸略大于γ'相,在熱暴露過(guò)程中伴隨相變反應(yīng)的進(jìn)行涂層的體積收縮,出現(xiàn)在涂層中的應(yīng)力使界面γ'相筏化層不斷深入[39]
(3)涂層/基體互擴(kuò)散反應(yīng):高溫下,劇烈的反應(yīng)(3、4)使界面附近γ'相的體積分?jǐn)?shù)增大,影響γ/γ'相的錯(cuò)配度[38],進(jìn)一步使界面下方的γ'相形筏出現(xiàn)差異
綜上所述,在不同溫度下長(zhǎng)期熱暴露后界面下方發(fā)生γ'相筏化的原因,是涂層相變和涂層/基體間持續(xù)進(jìn)行的互擴(kuò)散反應(yīng)
3 結(jié)論
(1) DD413合金/Pt-Al涂層在不同溫度下熱暴露的前期,MC碳化物的體積分?jǐn)?shù)和尺寸發(fā)生不同程度的增大,隨著熱暴露時(shí)間的延長(zhǎng)MC碳化物和σ-TCP相在互擴(kuò)散區(qū)內(nèi)逐漸溶解;熱暴露3600 h后少量MC碳化物和部分σ-TCP相分布在互擴(kuò)散區(qū)中,并有M23C6在界面組織中析出
隨著熱暴露溫度的提高界面組織的退化嚴(yán)重,使以上進(jìn)程明顯加速
(2) 長(zhǎng)時(shí)熱暴露后SRZ出現(xiàn)在界面下方,熱暴露溫度為1000℃時(shí)SRZ的厚度和σ-TCP相的尺寸均比在850℃熱暴露時(shí)大
(3) 長(zhǎng)時(shí)熱暴露后近涂層基體立方狀γ'相依次發(fā)生球化和相互聯(lián)接成筏形轉(zhuǎn)變
隨著熱暴露溫度提高到1000℃近涂層基體γ'相的損傷愈加嚴(yán)重,界面下方的部分γ'已形筏(平行于試樣表面),且隨著熱暴露時(shí)間的延長(zhǎng)筏化層厚度不斷增大,并向基體內(nèi)部延伸
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Zhu Z, Basoalto H, Warnken N, et al.
A model for the creep deformation behaviour of nickel-based single crystal superalloys
[J]. Acta Mater., 2012, 60(12): 4888
DOIURL [本文引用: 1]
[2]
Zhang J, Wang L, Wang D, et al.
Recent progress in research and development of nickel-based single crystal superalloys
[J]. Acta. Metall. Sin., 2019, 55(09): 1077
[本文引用: 1]
張 健, 王 莉, 王 棟 等.
鎳基單晶高溫合金的研發(fā)進(jìn)展
[J]. 金屬學(xué)報(bào), 2019, 55(09): 1077
[本文引用: 1]
[3]
Darolia R.
Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects
[J]. Int. Mater. Rev., 2019, 64(6): 355
DOI [本文引用: 1]
A comprehensive review of alloying effects in nickel-based single-crystal superalloys for turbine blades and vanes operating in a very aggressive environment of stress, oxidation and corrosion is presented. Exceptionally strong single-crystal superalloys have been developed containing increasing amounts of rhenium and decreasing amounts of chromium resulting in reduced environmental resistance. Interactions in a superalloy containing up to 15 alloying elements are complex and poorly understood. The superalloys can form brittle topologically closed-packed (TCP) phases unless the alloying additions are carefully selected. Development of superalloys with a required balance of strength and environmental resistance has been very challenging. Aluminium, chromium and tantalum are essential alloying elements for strength and environmental protection. Aluminium beyond an upper limit can lead to incipient melting during heat treatment necessary for achieving an optimum size and distribution of the gamma ' phase. Rhenium and ruthenium additions contribute significantly to strength, while considerably degrading environmental resistance. Hafnium and yttrium singularly or in combinations improve oxidation and corrosion resistance. Progress in modelling based on thermodynamics, kinetics and regression analysis of prior data to simultaneously predict strength and environmental resistance has been limited since the strengthening and environmental degradation are distinctly separate mechanisms. The paper presents a critical review of alloying studies and provides an insight into future developments.
[4]
Pradhan D, Mahobia G S, Chattopadhyay K, et al.
Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment
[J]. J. Alloys Compd., 2018, 740: 250
DOIURL [本文引用: 1]
[5]
Yan G, Yu W, Shengping S.
Oxidation protection of enamel coated Ni based superalloys: Microstructure and interfacial reaction
[J]. Corros Sci., 2020, 173: 108760
DOIURL [本文引用: 1]
[6]
Itoh Y, Saitoh M, Ishiwata Y.
Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys
[J]. J Mater Sci., 1999, 34(16): 3957
DOIURL
[7]
Liu H, Xu M M, Li S, et al.
Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating
[J]. J Mater Sci Technol., 2020, 54: 132
DOI [本文引用: 1]
A low-diffusion NiRePtAl coating ((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer) was prepared on a Ni3Al-base single crystal (SC) superalloy via electroplating and gaseous aluminizing treatments, wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt. In order to perform a comparison with conventional NiAl and (Ni,Pt)Al coatings, the cyclic oxidation performance of the NiRePtAl coating was evaluated at 1100 and 1150 °C. We observed that the oxidation resistance of the NiRePtAl coating was significantly improved by the greater presence of the residual β-NiAl phase in the outer layer and the lesser outward-diffusion of Mo from the substrate. In addition, the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate, where the thickness of the second reaction zone (SRZ) in the substrate alloy decreased by 25 %. The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed, in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.
[8]
Latief F H, Kakehi K.
Influence of thermal exposure on the creep properties of an aluminized Ni-based single crystal superalloy in different surface orientations
[J]. Mater. Des., 2014, 56: 816
DOIURL [本文引用: 1]
[9]
Qin X Z, Guo J T, Yuan C, et al.
Long-term thermal exposure responses of the microstructure and properties of a cast Ni-base superalloy
[J]. Mater. Sci. Eng. A., 2012, 543: 121
DOIURL
[10]
Yang L, Chen M, Wang J, et al.
Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation
[J]. J Mater Sci Technol., 2020, 45: 49
DOI [本文引用: 1]
MCrAlY (M=Ni and/or Co) overlay coating is widely used as a protective coating against high temperature oxidation and corrosion. However, due to its big difference in chemical composition with the underlying superalloy, elements interdiffusion occurs inevitably. One of the direct results is the formation of interdiffusion zone (IDZ) and secondary reaction zone (SRZ) with a high density of fine topological closed-packed phases (TCPs), weakening dramatically the mechanical properties of the alloy substrate. It is by now the main problem of modern high-temperature metallic coatings, but there are still hardly any reports studying the formation, growth and transformation of IDZ and SRZ in deep, as well as the precipitation of TCPs. In this work, a typical NiCrAlY coating is deposited by arc ion plating on a single-crystal superalloy N5. Elements interdiffusion between them and its relationship on microstructure were clarified. Cr rather than Al from the coating diffuses into the alloy at high temperatures and segregates immediately beneath their interface, contributing largely to the formation of IDZ. Simultaneously, diffusion of Ni from the deep alloy to IDZ leads to the formation and continuous expansion of SRZ.
[11]
Alam M Z, Satyanarayana D V V, Chatterjee D, et al.
Creep behavior of Pt-aluminide (PtAl) coated directionally solidified Ni-based superalloy CM-247LC after thermal exposure
[J]. Mater. Sci. Eng. A., 2015, 641: 84
DOIURL [本文引用: 2]
[12]
Zhang J C, Liu L, Huang T W, et al.
Coarsening kinetics of γ' precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging
[J]. J Mater Sci Technol., 2021, 62(03): 1
DOIURL [本文引用: 1]
[13]
Moshtaghin R S, Asgari S.
Growth kinetics of γ' precipitates in superalloy IN-738LC during long term aging
[J]. Mater. Des., 2003, 24(5): 325
DOIURL [本文引用: 1]
[14]
Chen X, Yao Z, Dong J, et al.
The effect of stress on primary MC carbides degeneration of Waspaloy during long term thermal exposure
[J]. J. Alloys Compd., 2018, 735: 928
DOIURL [本文引用: 1]
[15]
Tan Z, Yang L, Wang X, et al.
Evolution of TCP phase during long term thermal exposure in several Re-Containing single crystal superalloys
[J]. Acta. Metall. Sin. (English Letters), 2020, 33(5): 731
[16]
Dubiel B, Indyka P, Kalemba-Rec I, et al.
The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ' and TCP phases in single crystal Ni-base superalloy
[J]. J. Alloys Compd., 2018, 731: 693
DOIURL [本文引用: 1]
[17]
Yuan K, Eriksson R, Lin P R, et al.
Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation
[J]. Surf. Coat. Technol., 2013, 232: 204
DOIURL [本文引用: 1]
[18]
Yang H Z, Zou J P, Shi Q, et al.
Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at High temperature
[J]. Corros Sci., 2020, 175: 108889
DOIURL
[19]
Angenete J, Stiller K, Bakchinova E.
Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050℃
[J]. Surf. Coat. Technol., 2004, 176(3): 272
DOIURL
[20]
Rahmani K, Nategh S.
Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80
[J]. Surf. Coat. Technol., 2008, 202(8): 1385
DOIURL [本文引用: 1]
[21]
Alam M Z, Satyanarayana D V V, Chatterjee D, et al.
Effect of prior cyclic oxidation on the creep behavior of directionally solidified (DS) CM-247LC alloy
[J]. Mater. Sci. Eng. A., 2012, 536: 14
DOIURL [本文引用: 1]
[22]
Li S, Qi H, Yang X.
Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment
[J]. Rare Metals, 2018, 37(3): 204
DOIURL [本文引用: 1]
[23]
Han L, Zheng S, Tao M, et al.
Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating
[J]. Int J Fatigue., 2021, 153: 106500
DOIURL [本文引用: 1]
[24]
Han L, Li P, Yu S, et al.
Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism
[J]. Int J Fatigue., 2022, 154: 106558
DOIURL [本文引用: 1]
[25]
Shi L, Xin L, Wang X, et al.
Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors
[J]. J. Alloys Compd., 2015, 649: 515
DOIURL [本文引用: 1]
[26]
Liu C T, Ma J, Sun X F, et al.
Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M
[J]. Surf. Coat. Technol., 2010, 204(21): 3641
DOIURL
[27]
Leng W, Pillai R, Naumenko D, et al.
Effect of substrate alloy composition on the oxidation behaviour and degradation of aluminide coatings on two Ni base superalloys
[J]. Corros Sci., 2020, 167: 108494
DOIURL [本文引用: 1]
[28]
Aghaie-Khafri M, Farahany S.
Creep life prediction of thermally exposed rene 80 superalloy
[J]. J. Mater. Eng. Perform., 2010, 19(7): 1065
DOIURL [本文引用: 1]
[29]
Yin B, Xie G, Lou L, et al.
Effect of Ta on microstructural evolution of NiCrAlYSi coated Ni-base single crystal superalloys
[J]. J. Alloys Compd., 2020, 829: 154440
DOIURL [本文引用: 2]
[30]
Walston W S, Schaeffer J C, Murphy W H.
A new type of microstructural instability in superalloys-SRZ
[J]. Superalloys, 1996: 9
[本文引用: 1]
[31]
Chen M, Shen M, Zhu S, et al.
Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000℃
[J]. Corros Sci., 2013, 73: 331
DOIURL [本文引用: 1]
[32]
Li J, Jing J, He J, et al.
Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures
[J]. Mater. Des., 2020, 193:108776
DOIURL [本文引用: 2]
[33]
Liu Y, Zou M, Su H, et al.
Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy
[J]. Surf. Coat. Technol., 2021, 411: 127005
DOIURL [本文引用: 1]
[34]
Liu L R, Jin T, Zhao N R, et al.
Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy
[J]. Mater. Sci. Eng. A., 2003, 361(1): 191
DOIURL [本文引用: 1]
[35]
Xiang X, Yao Z, Dong J, et al.
Dissolution behavior of intragranular M23C6 carbide in 617B Ni-base superalloy during long-term aging
[J]. J. Alloys Compd., 2019, 787: 216
DOIURL [本文引用: 2]
[36]
Zhan X, Wang D, Ge Z, et al.
Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy
[J]. Surf. Coat. Technol., 2022, 440: 128487
DOIURL [本文引用: 1]
[37]
Campbell C E.
Assessment of the diffusion mobilites in the γ' and B2 phases in the Ni-Al-Cr system
[J]. Acta Mater., 2008, 56(16): 4277
DOIURL [本文引用: 2]
[38]
Suzuki A, Rae C M F.
Secondary reaction zone formations in coated Ni-base single crystal superalloys
[J]. J Phys Conf Ser., 2009, 165: 12002
DOIURL [本文引用: 2]
[39]
Pollock T M, Argon A S.
Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates
[J]. Acta Metall. Mater., 1994, 42(6): 1859
DOIURL [本文引用: 1]
A model for the creep deformation behaviour of nickel-based single crystal superalloys
1
2012
聲明:
“長(zhǎng)時(shí)熱暴露對(duì)一種抗熱腐蝕單晶高溫合金/Pt-Al涂層體系微觀組織演化的影響” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)