国产在线一区二区不卡|在线观看中文字幕一区|亚洲中文无码h在线观看|欧美 亚洲 图色 另类|免费人成视频x8x8入口|国产福利观看天堂素人约啪|人妻无码专区一专区二专区三|国产婷婷成人久久AV免费高清

合肥金星智控科技股份有限公司
宣傳

位置:中冶有色 >

有色技術(shù)頻道 >

> 復合材料技術(shù)

> Graphene/SiO2 納米復合材料作為水基潤滑添加劑的摩擦學性能

Graphene/SiO2 納米復合材料作為水基潤滑添加劑的摩擦學性能

779   編輯:中冶有色技術(shù)網(wǎng)   來源:王偉,解澤磊,屈怡珅,常文娟,彭怡晴,金杰,王快社  
2024-04-17 10:06:55
鈦合金輕質(zhì)、耐高溫、耐腐蝕、生物相容性好且無磁性,在航空、航天、兵器、艦船、醫(yī)療等領域得到了廣泛的應用[1,2] 但是,鈦合金的導熱系數(shù)低、高溫化學活性高和彈性模量小,在切削加工過程中工件與刀具的粘連使其磨損嚴重、加工后的工件表面質(zhì)量較差、加工成本提高,限制了鈦合金的應用[3~5] 提高鈦合金切削性能的關(guān)鍵,在于改善切削界面摩擦狀態(tài),實現(xiàn)高效潤滑 但是,鈦合金獨特的摩擦學特性使傳統(tǒng)金屬加工潤滑液難以在鈦合金表面有效潤滑 在基礎液中添加納米材料,是提高潤滑介質(zhì)加工性的主要手段[6~8] 石墨烯(Graphene)是一種典型的二維材料,層與層之間依靠弱范德華力連接,具有較弱的剪切力、優(yōu)異的機械性能、大比表面積和較高的熱導率,在潤滑領域受到了極大的關(guān)注[9,10] Ming等[11]在植物油中添加石墨烯用于TC4合金切削加工潤滑,可增強銑削區(qū)域油膜的潤滑性能 Ning等[12]將Graphene、磷酸鹽、納米ZrO2等按一定比例混合制備石墨烯水基潤滑劑應用于鈦合金熱軋,降低了熱軋過程的摩擦磨損和氧化 Ibrahim等[13]將石墨烯加入棕櫚油中,摩擦系數(shù)和切削能耗比Acculube LB2000商用潤滑油大幅降低 但是,結(jié)構(gòu)完整的Graphene因化學穩(wěn)定性高而難以在溶劑中穩(wěn)定分散,容易產(chǎn)生不可逆團聚使摩擦過程中難以進入工況表面,無法發(fā)揮抗磨減磨的作用[14,15]

納米復合材料在基礎液中的分散性高,且不同納米材料之間的協(xié)同作用可進一步提高潤滑性能 Meng[16,17]等在氧化石墨烯(GO)表面沉積Au或Cu,降低了石墨烯片層間的π-π鍵的相互作用減少了團聚 與單一納米材料(GO、Au和Cu)相比,復合材料之間的協(xié)同作用使其具有更優(yōu)異的潤滑性能 Li等[18]用激光輻射制備的Ag/Graphene復合材料可穩(wěn)定在油中懸浮60 d以上,這種潤滑添加劑不會產(chǎn)生金屬腐蝕和環(huán)境污染 Graphene與金屬納米材料復合的成本高,回收難,因此難以推廣 SiO2中的Si-O親水性和耐磨性較好,且成本較低[19,20] Na等[21]用原位引發(fā)聚合法制備的PTFE/SiO2復合材料,提高了PTFE在純水中的分散性和摩擦性能 Zhang等[22]用溶膠-凝膠法制備Fe3O4@SiO2納米復合材料,提高了Fe3O4在環(huán)氧樹脂中的分散性 在Graphene表面原位生成SiO2制備Graphene/SiO2納米復合材料,可提高Graphene在超純水中的分散性且降低成本 鑒于此,本文用溶膠凝膠法在Graphene表面原位生成SiO2制備Graphene/SiO2納米復合材料,以提高Graphene在超純水中的分散性且降低成本,并將其作為水基潤滑添加劑研究GCr15/TC4接觸下的摩擦學性能并揭示其潤滑機理

1 實驗方法1.1 實驗用材料

無水乙醇(C2H5OH,分析純),氨水(NH3·H2O,分析純),石油醚(PE)和正硅酸乙酯(TEOS),Graphene和工業(yè)SiO2

1.2 納米復合材料Graphene/SiO2 的制備

使用溶膠-凝膠法中的St?ber法制備Graphene/SiO2[23],其工藝示意圖如圖1所示 將0.2 g的Graphene添加到50 mL無水乙醇和50 mL超純水的混合溶液中,使用超聲波破碎30 min 然后加入1 mL氨水和2 mL TEOS并對混合溶液磁力攪拌12 h 對產(chǎn)物進行離心分離后收集膠狀固體產(chǎn)物,用無水乙醇多次清洗以除去氨水和未反應的TEOS 將所得膠狀固體在75℃真空環(huán)境干燥12 h后達到納米復合材料Graphene/SiO2

圖1



圖1制備Graphene/SiO2納米復合材料的示意圖

Fig.1Schematic diagram of preparation of Graphene/SiO2 composite nanomaterials

1.3 摩擦磨損實驗

使用旋轉(zhuǎn)式摩擦磨損試驗儀(UMT-5)測試試樣的摩擦磨損性能,上試樣是直徑為6 mm的GCr15鋼球,下試樣是厚度為8 mm直徑為25 mm的TC4圓盤 摩擦實驗中的潤滑劑,是超純水中添加不同質(zhì)量分數(shù)的Graphene/SiO2 實驗的線速度為0.047 m/s,載荷為8~15 N,時間為30 min,根據(jù)赫茲理論計算赫茲接觸壓力

πP=4Fπa2

(1)

a=2(23×FRE')3

(2)

1E'=12(1-μ12E1+1-μ22E2)

(3)

其中P為赫茲接觸應力,a為接觸直徑、F為摩擦試驗機施加載荷(8~15 N)、R為GCr15球半徑、E'為有效彈性模量[24,25] E1(TC4 113 GPa)和E2(GCr15 207 GPa)為摩擦試樣的彈性模量,μ1(0.34)和μ2(0.30)為泊松比 最大接觸應力范圍為1.04~1.29 GPa GCr15球的磨損率為[26,27]

h=r-r2-d24

(4)

V=πl(wèi)63d24+h2

(5)

WB=VPS

(6)

式中d為等效圓的直徑,r為GCr15球的直徑,P為載荷,S為總滑動距離 實驗前用無水乙醇超聲清洗GCr15球和TC4圓盤30 min以去除污染,摩擦實驗開始前滴加80 μL的潤滑劑 實驗結(jié)束后用棉球擦拭表面,干燥后保存

1.4 性能表征

用沉降法評估Graphene/SiO2在超純水中的分散穩(wěn)定性[35] 將0.2%(質(zhì)量分數(shù))的Graphene和Graphene/SiO2分別加到超純水中,超聲1 h靜置適當時間后拍攝光學圖像

用X射線衍射儀(XRD,D/MAX-RB)測試Graphene/SiO2納米材料的晶體結(jié)構(gòu) 用掃描電子顯微鏡(SEM,JSM-5610LV)觀察Graphene/SiO2復合材料的微觀組織形貌,用SEM附帶的EDS分析復合材料和磨損表面元素的成分 用拉曼光譜儀(LabRam HR Evolution)測試Graphene和Graphene/SiO2納米復合材料的拉曼光譜 用金相顯微鏡(OM,GX51) 測量鋼球磨斑的直徑,用三維白光掃描儀(TDWS,MicroXAM-800)測量TC4圓盤磨損體積 用掃描電鏡分析實驗后TC4圓盤磨痕的微觀組織形貌和元素的分布 用X射線光電子能譜儀(XPS,PHI 5000) 分析磨損表面的特征元素

2 結(jié)果和討論2.1 Graphene/SiO2 納米復合材料的形貌與表征

圖2給出了Graphene和SiO2的掃描電鏡照片,可見片層之間褶皺,邊緣處卷曲,SiO2球狀顆粒的直徑約為300 nm 圖2c給出了Graphene/SiO2納米復合材料的掃面電鏡照片,可見Graphene的卷曲結(jié)構(gòu),表面均為小球顆粒,能譜分析表明主要元素為Si、O和C,即Graphene表面生成了SiO2納米顆粒 與單一的納米SiO2相比,Graphene表面的SiO2顆粒尺寸差異較大(圖2b和c) 其原因是,在TEOS發(fā)生化學反應形成SiO2的過程中Graphene和部分SiO2顆粒都是形核位點,生成了較大的SiO2顆粒[28]

圖2



圖2不同試樣的SEM照片、Graphene/SiO2的能譜、以及Graphene/SiO2、Graphene、Amorphous SiO2和SiO2的XRD譜

Fig.2SEM images of different samples (a) graphene, (b) SiO2, (c) graphene/SiO2; (d) energy spectrum of Graphene/SiO2;(e) XRD patterns of Graphene/SiO2, Graphene, Amorphous SiO2 and SiO2

圖2e給出了XRD譜 可以看出,Graphene在譜中的26.34°和42.68°出現(xiàn)了兩個特征衍射峰[29],低矮的衍射峰對應非晶態(tài)SiO2,明顯的衍射峰對應晶體SiO2[30] Graphene/SiO2納米復合材料的衍射峰與非晶SiO2一致,沒有出現(xiàn)Graphene的衍射峰特征

圖3給出了Graphene和Graphene/SiO2的拉曼光譜,可見Graphene的衍射峰位于1333.2 cm-1、1567.1 cm-1和2671.8 cm-1處,分別對應D峰、G峰和2D峰 G峰的強度高于2D峰,表明材料具有多層結(jié)構(gòu)[31,32] 與Graphene的特征峰相比Graphene/SiO2的特征峰正向偏移,表明Graphene表面原位生成了SiO2[33,34] 以上結(jié)果表明,已制備出Graphene/SiO2納米復合材料

圖3



圖3Graphene/SiO2和Graphene的Raman譜

Fig.3Raman spectra of Graphene/SiO2 and Graphene

2.2 Graphene/SiO2 的分散性

圖4給出了不同潤滑劑放置不同時間的光學圖像 Graphene在超純水中分散性差,放置24 h就完全分層 而含有Graphene/SiO2的超純水溶液的分散較為穩(wěn)定,靜止48 h后開始出現(xiàn)沉淀,上層溶液變淺,表明其分散性優(yōu)于Graphene

圖4



圖4不同潤滑劑在不同時間的光學圖像

Fig.4Optical images of different lubricants at different time:(a) 0.2% Graphene; (b) 0.2% Graphene/SiO2

2.3 Graphene/SiO2 納米復合材料作為水基潤滑添加劑的摩擦學性能

圖5給出了不同含量的Graphene/SiO2的平均摩擦系數(shù)和磨損率曲線 可以看出,平均摩擦系數(shù)和磨損率均呈現(xiàn)先下降后上升,0.2%(質(zhì)量分數(shù))的Graphene/SiO2摩擦系數(shù)最低,比超純水工況降低17.9%,鋼球磨損率降低61.7% 添加劑含量超過0.2%(質(zhì)量分數(shù)),則摩擦性能開始降低

圖5



圖5不同含量的Graphene/SiO2的平均摩擦系數(shù)和磨損率曲線

Fig.5Curves of average coefficient of friction and wear rate of Graphene/SiO2 with different contents

圖6給出了在不同載荷下0.2%(質(zhì)量分數(shù))Graphene/SiO2潤滑劑的摩擦系數(shù) 從圖6可見,在相同的載荷下超純水的摩擦系數(shù)曲線均在潤滑添加劑上方 在8 N載荷工況下超純水的摩擦系數(shù)先上升到0.36然后降到0.28,最終在0.29~0.32之間波動,而Graphene/SiO2的摩擦系數(shù)明顯降低 在12 N載荷工況下,超純水和Graphene/SiO2的摩擦系數(shù)接近,而Graphene/SiO2的摩擦曲線有升高的趨勢 在15 N載荷工況下5 min后超純水的摩擦系數(shù)保持在0.29,而Graphene/SiO2的摩擦系數(shù)保持在0.24 在總體上,在載荷相同的工況下Graphene/SiO2的摩擦系數(shù)曲線始終在超純水之下

圖6



圖6超純水和Graphene/SiO2在不同載荷條件下的摩擦系數(shù)

Fig.6Coefficient of friction curve of water and Graphene/SiO2 under different loads (a) 8 N, (b) 10 N, (c) 12 N, (d) 15 N

圖7給出了超純水和含量為0.2%(質(zhì)量分數(shù))的Graphene/SiO2在不同載荷下的平均摩擦系數(shù)和磨損率 可以看出,載荷由8 N增大到12 N時Graphene/SiO2的摩擦系數(shù)和磨損率均增大,而超純水的摩擦系數(shù)降低、磨損率提高 載荷為10 N時Graphene/SiO2的平均摩擦系數(shù)比超純水的平均摩擦系數(shù)降低了5.9%而磨損率降低了34.4% 載荷從12 N增大到15 N,Graphene/SiO2和超純水的平均摩擦系數(shù)和磨損率都降低 在載荷相同條件下,Graphene/SiO2的平均摩擦系數(shù)和磨損率均低于超純水 在15 N載荷工況下Graphene/SiO2的摩擦系數(shù)和磨損率最低,摩擦系數(shù)為0.2399,磨損率為3.75×10-8 mm3/N·m 與超純水相比,摩擦系數(shù)降低17.9%,磨損率降低了61.7%

圖7



圖7超純水和Graphene/SiO2不同載荷條件下的摩擦系數(shù)和磨損率

Fig.7Coefficient of Friction(a) and wear rates of water and Graphene/SiO2 (b) under various load conditions

圖8給出了三維白光測量數(shù)據(jù) 計算結(jié)果表明,超純水和0.2%(質(zhì)量分數(shù))潤滑添加劑的磨痕磨損體積分別為0.017 mm3和0.019 mm3,但0.2%(質(zhì)量分數(shù))潤滑添加劑的摩擦系數(shù)和鋼球磨損率的實驗結(jié)果均低于超純水 其原因是,較高載荷產(chǎn)生更多的磨屑,使TC4盤磨損體積增大 同時,磨屑和SiO2顆粒對磨損表面共同修復提高了耐磨性,使摩擦系數(shù)降低[36]

圖8



圖8TC4圓盤的三維白光和磨痕剖面

Fig.83D Micrographs and profiles of wear tracks of TC4 discs (a) Ultra-pure water (b) Graphene/SiO2

2.4 磨損表面

圖9給出了超純水和Graphene/SiO2潤滑下磨痕表面的OM圖 可以看出,GCr15鋼球磨痕均為橢圓狀,在載荷作用下接觸區(qū)域不是理想狀態(tài)的剛體,因此使局部變形成橢圓狀的接觸區(qū)(圖10)[37,38] 用超純水潤滑(圖9a~d)則鋼球表面沿滑動方向有深而寬的磨痕,劃痕和凹坑較多,磨損量大 在超純水中加入Graphene/SiO2潤滑劑(圖9e~h)使磨痕變淺變窄,磨斑明顯變小

圖9



圖9不同載荷下GCr15的磨痕OM圖

Fig.9OM images of GCr15 wear scars at different loads (a~d) Ultra-pure water (e~h) 0.2% Graphene/SiO2

圖10



圖10Hertz球盤接觸模型

Fig.10Hertz contact model of sphere-on-disc

圖11a~d給出了經(jīng)超純水潤滑的TC4圓盤磨痕的SEM照片和EDS譜 可以看出,超純水潤滑的磨損表面有明顯的脫屑且出現(xiàn)細小顆粒磨損 表面上的元素主要是TC4的主要元素而未發(fā)現(xiàn)氧元素,表明未發(fā)生氧化 在15 N載荷工況下表面出現(xiàn)片層狀脫落、磨屑和犁溝,表明磨損機制為磨粒磨損和黏著磨損 圖11e~h給出了經(jīng)Graphene/SiO2潤滑后的表面 可以看出,在8 N和10 N載荷下磨損表面上的殘留物質(zhì)較多 圖12給出了對殘留物質(zhì)的能譜分析,可見磨損表面的物質(zhì)主要為TC4和Graphene/SiO2 Fe元素來自于GCr15小球,表明發(fā)生了材料轉(zhuǎn)移 在15 N載荷工況下磨損表面出現(xiàn)坑洞和裂縫,還出現(xiàn)顆粒和脫屑,表明磨損形式主要為疲勞磨損、磨粒磨損和黏著磨損 圖11g~h給出了12 N和15 N載荷工況表面的EDS分析結(jié)果 可以看出,磨損表面出現(xiàn)Si元素,C元素的含量較低 這表明,在高載荷下潤滑劑難以進入摩擦表面 圖13給出了在15 N載荷工況下的面掃描結(jié)果 可以看出,表面出現(xiàn)均勻的Si元素,高分辨SEM圖像證明磨損表面有SiO2顆粒

圖11



圖11不同載荷下TC4盤的磨痕SEM照片

Fig.11SEM images of wear scars of TC4 discs under different loads: (a~d) Ultra-pure water, (e~h) 0.2% Graphene/SiO2 lubricant

圖12



圖1210 N載荷下0.2%Graphene/SiO2潤滑添加劑的TC4盤磨痕能譜

Fig.12EDS spectra of the wear scar of the TC4 disc lubricated by 0.2%Graphene/SiO2 lubrication additive under 10 N load (a) high resolution SEM image (b) area I EDS (c) area II EDS

圖13



圖1315N載荷下0.2% Graphene/SiO2潤滑添加劑的 TC4盤磨痕能譜

Fig.13EDS spectra of the wear scar of the TC4 disc lubricated by 0.2%Graphene/SiO2 lubrication additive under 15 N load (a) The high resolution SEM image, (b) the spectra, (c~e) the distribution of Ti, C, Si elements

圖14給出了對磨損表面特征元素的XPS分析,以揭示Graphene/SiO2添加劑的潤滑機理 由圖14a中的C1s譜峰對應磨損表面的C-C、C-O、C=O鍵可見,磨損表面存在Graphene,而SiC是切割圓盤制取XPS試樣時引入的 Si2p的譜峰(圖14c)也證實了SiC的存在[39] 從圖14b中的O1s譜峰可知,Ti和Al金屬在空氣中易生成一層致密的氧化薄膜,磨損表面出現(xiàn)TiO2和Al2O3[40,41] 而SiO2的存在,證明磨損表面Graphene/SiO2潤滑添加劑的存在 磨損表面并未發(fā)生復雜的化學反應,而在15 N載荷條件下Si元素在磨損表面均勻分布,表明在摩擦過程中Graphene/SiO2水基潤滑劑在摩擦界面生成了一定厚度的物理吸附膜

圖14



圖14Graphene/SiO2潤滑的TC4圓盤磨損表面的XPS分析

Fig.14XPS analysis of worn surface of TC4 disc lubricated by Graphene/SiO2: (a) C1s (b) O1s (c) Si2p (d) Al2p (e) Ti2p

根據(jù)潤滑理論,潤滑的狀態(tài)可用潤滑狀態(tài)圖中的兩個分量

gV=GW3u2

(7)

gE=W8/3u2

(8)

表示 其中u=ηV/E'R,G=αE',W=F/E'R2,R為GCr15球的半徑(3 mm),V為摩擦過程中的摩擦副的相對線速度(47.1 mm/s),η為潤滑劑的粘度,α為粘度-壓力系數(shù),E'(163 GPa)為有效彈性模量,F(xiàn)(8~15 N)施加的載荷,k(≈1.03)為橢圓參數(shù) 根據(jù)hamrock-dowson理論,薄膜的最小理論厚度和比率分別為[42]

hmin=2.69G0.53U0.67W0.067(1-0.61e-0.73k)

(9)



λ=hminσ12+σ22

(10)

其中σ1和σ2分別為球和盤的粗糙度(σ1=20 nm,σ2=40 nm) 計算結(jié)果表明,hmin約為8.08 nm,λ約為0.18,表明潤滑狀態(tài)處于邊界潤滑[43]

根據(jù)計算出的邊界潤滑狀態(tài)提出相應的磨損機理(圖15):添加在超純水中的Graphene/SiO2吸附或沉積在摩擦表面生成潤滑膜,將摩擦副和磨損表面凹凸點接觸轉(zhuǎn)變?yōu)槟Σ粮?潤滑膜-磨損面的接觸,減少了磨損[44~46] 由圖11h和圖13可見,在摩擦實驗過程中從Graphene表面脫落的SiO2修補了磨損表面,部分SiO2在接觸面產(chǎn)生微軸承作用,將滑動摩擦轉(zhuǎn)變?yōu)闈L動摩擦[47] 在高載荷情況下摩擦副表面上的凸峰折斷產(chǎn)生了更多的細小磨屑,磨屑與部分潤滑添加劑相結(jié)合修復了磨損表面[48] 因此,與其他載荷相比15 N載荷情況下的摩擦系數(shù)更低 另一方面,Graphene片層間依靠范德華力結(jié)合,在滑動過程中摩擦副之間的低剪切力使片層產(chǎn)生相對滑動,Graphene給接觸區(qū)域補充水而避免了直接接觸[49] 這表明,Graphene/SiO2潤滑添加劑的加入提高了超純水的摩擦學性能

圖15



圖15Graphene/SiO2的潤滑機理示意圖

Fig.15Schematic diagram of lubrication mechanism of Graphene/SiO2

3 結(jié)論

(1) 使用溶膠-凝膠St?ber法制備的Graphene/SiO2復合材料,Graphene為軟質(zhì)內(nèi)核,SiO2在其表面形成一層硬質(zhì)外殼,外殼粒子的直徑約為100 nm并能在水中穩(wěn)定分散

(2) 在15 N載荷工況下,0.2% Graphene/SiO2水基潤滑劑摩擦系數(shù)比超純水降低17.9%,鋼球磨損率降低了61.7%

(3) 在高載荷作用下Graphene/SiO2潤滑劑的潤滑效果更好,主要原因是Graphene/SiO2納米復合材料在磨損表面生成了物理吸附膜、Graphene的層狀剪切作用以及SiO2對磨損表面的修復和滾珠軸承作用

參考文獻

View Option 原文順序文獻年度倒序文中引用次數(shù)倒序被引期刊影響因子

[1]

Li C H, Zhu M, Wang N, et al.

Application of titanium alloy in airplane

[J]. Chinese Journal of Rare Metals, 2009, 33(1): 84

[本文引用: 1]

李重河, 朱 明, 王 寧 等.

鈦合金在飛機上的應用

[J]. 稀有金屬, 2009, 33(01): 84

[本文引用: 1]

[2]

Niinomi M.

Recent progress in research and development of metallic structural biomaterials with mainly focusing on mechanical biocompatibility

[J]. Materials Transactions, 2018, 59(1): 1

DOIURL [本文引用: 1]

[3]

Liu Q M, Xu J K, Yu H D.

Experimental study of tool wear and its effects on cutting process of ultrasonic-assisted milling of Ti6Al4V

[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 2917

DOI [本文引用: 1]

[4]

Zhang H, Qi X.

Super low friction characteristics initiated by running-in process inwater-based lubricant for Ti-alloy

[J]. Chinese Journal of Materials Research, 2021, 35(5): 349

張會臣, 漆雪蓮.

跑合過程引發(fā)鈦合金水基潤滑的超低摩擦特性

[J]. 材料研究學報, 2021, 35(05): 349

[5]

Cheng J, Li F, Qiao Z H, et al.

The role of oxidation and counterface in the high temperature tribological properties of TiAl intermetallics

[J]. Materials & Design, 2015, 84: 245

[本文引用: 1]

[6]

Sun J, Meng Y.

Lubrication and repair of metal surface by nano-fluid

[J]. Surface Technology, 2019, 48(11): 1

[本文引用: 1]

孫建林, 孟亞男.

納米加工液對金屬表面的潤滑與修復

[J]. 表面技術(shù), 2019, 48(11): 1

[本文引用: 1]

[7]

Xu Y F, Sun K Q, Yu J Y, et al.

Tribological properties of TiO2/BP nanocomposites as lubricant additives for titanium alloy tribopairs

[J]. Tribology Transactions, 2022, 65(2): 270

DOIURL

[8]

Hegab H, Kishawy H A, Gadallah M H, et al.

On machining of Ti-6Al-4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication

[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 1593

DOI [本文引用: 1]

[9]

Hou S X, Li Z G, Ren C X, et al.

Research progress of graphene as additives in lubrication

[J]. Applied Chemical Industry, 2021, 50(6): 1683

[本文引用: 1]

侯鎖霞, 李兆剛, 任呈祥 等.

石墨烯添加劑潤滑性能的研究進展

[J]. 應用化工, 2021, 50(06): 1683

[本文引用: 1]

[10]

Ye X Y, Ma L M, Yang Z G, et al.

Covalent functionalization of fluorinated graphene and subsequent application as water-based lubricant additive

[J]. Acs Applied Materials & Interfaces, 2016, 8(11): 7483

[本文引用: 1]

[11]

Li M, Yu T B, Zhang R C, et al.

MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid

[J]. Int. J. Adv. Manuf. Technol., 2018, 99(5-8): 1735

DOI [本文引用: 1]

[12]

Kong N, Zhang J, Zhang J, et al.

Chemical- and mechanical-induced lubrication mechanisms during hot rolling of titanium alloys using a mixed graphene-incorporating lubricant

[J]. Nanomaterials, 2020, 10(4): 665

DOIURL [本文引用: 1] " />

Crystals are formed via nucleation and subsequent growth. In many cases, it is not easy to decide if nucleation occurs in the volume (homogeneous nucleation) or on a foreign surface, structure defects etc. (heterogeneous nucleation). This work is focused on crystal nucleation in a small supercooled liquid droplet when nuclei are formed in the volume or on the droplet surface simultaneously. The kinetic equations of homogeneous and heterogeneous nucleation are solved numerically to determine the size distribution of crystal nuclei and nucleation rate of both processes in Ni liquid droplet. The decrease of the number of atoms within the droplet volume in consequence of homogeneous and heterogeneous nucleation is taken into account. The number of nucleation sites on droplet surface decreases as new heterogeneous nuclei are formed. It is shown how both nucleation processes occur simultaneously.

[29]

Seehra M S, Narang V, Geddam U K, et al.

Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification

[J]. Carbon, 2017, 111: 380

DOIPMID [本文引用: 1] " />

設計合成了以具有放射狀介孔孔道(孔徑約2.6 nm)的介孔氧化硅(mSiO<sub>2</sub>)微球(粒徑約300 nm)為內(nèi)核、以CeO<sub>2</sub>納米顆粒為包覆層(殼厚為15~20 nm)的mSiO<sub>2</sub>/CeO<sub>2</sub>復合顆粒(粒徑在330~340 nm),使用場發(fā)射掃描電鏡、透射電鏡、X射線衍射、傅里葉轉(zhuǎn)換紅外光譜和氮氣吸脫附等手段表征了樣品的結(jié)構(gòu) 結(jié)果表明,使用以實心氧化硅(sSiO<sub>2</sub>)為內(nèi)核的sSiO<sub>2</sub>/CeO<sub>2</sub>復合顆粒拋光的熱氧化硅片其表面粗糙度均方根值(Root-mean-square roughness, RMS)為0.309 nm,材料的去除率(Material removal rate, MRR)為24 nm/min) mSiO<sub>2</sub>/CeO<sub>2</sub>復合顆粒有利于得到更低的氧化硅片拋光表面粗糙度(RMS=0.267 nm)和更高的拋光速率(MRR=45 nm/min),且能避免出現(xiàn)劃痕等機械損傷 SiO<sub>2</sub>/CeO<sub>2</sub>復合顆粒中的氧化硅內(nèi)核結(jié)構(gòu),對其拋光特性有明顯的影響

[31]

Wang D J, Zhang M Q, Ji Z S, et al.

Process and properties of graphene reinforced Mg-based composite prepared by in-situ method

[J]. Chinese Journal of Materials Research, 2021, 35(6): 474

[本文引用: 1]

王殿君, 張明秋, 吉澤升, 張吉生 等.

原位自生法制備石墨烯增強鎂基復合材料的工藝和性能

[J]. 材料研究學報, 2021, 35(6): 474

[本文引用: 1]

[32]

Nanda S S, Kim M J, Yeom K S, et al.

Raman spectrum of graphene with its versatile future perspectives

[J]. Trac-Trends. Anal. Chem., 2016, 80: 125

DOIURL [本文引用: 1]

[33]

Yang H, Li F, Shan C, et al.

Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement

[J]. J. of Mater. Chem., 2009, 19(26): 4632

DOIURL [本文引用: 1]

[34]

Wan Y J, Gong L X, Tang L C, et al.

Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide

[J]. Compos. Pt. A.-Appl. Sci. Mannf., 2014, 64: 79

[本文引用: 1]

[35]

Gulzar M, Masjuki H H, Kalam M A, et al.

Tribological performance of nanoparticles as lubricating oil additives

[J]. Journal of Nanoparticle Research, 2016, 18(8): 223

DOIURL [本文引用: 1]

[36]

Guo J D, Peng R L, Du H, et al.

The Application of nano-MoS2 quantum dots as liquid lubricant additive for tribological behavior improvement

[J]. Nanomaterials, 2020, 10(2): 12

DOIURL [本文引用: 1] " />

Hip arthroplasty can be considered one of the major successes of orthopedic surgery, with more than 350000 replacements performed every year in the United States with a constantly increasing rate. The main limitations to the lifespan of these devices are due to tribological aspects, in particular the wear of mating surfaces, which implies a loss of matter and modification of surface geometry. However, wear is a complex phenomenon, also involving lubrication and friction. The present paper deals with the tribological performance of hip implants and is organized in to three main sections. Firstly, the basic elements of tribology are presented, from contact mechanics of ball-in-socket joints to ultra high molecular weight polyethylene wear laws. Some fundamental equations are also reported, with the aim of providing the reader with some simple tools for tribological investigations. In the second section, the focus moves to artificial hip joints, defining materials and geometrical properties and discussing their friction, lubrication and wear characteristics. In particular, the features of different couplings, from metal-on-plastic to metal-on-metal and ceramic-on-ceramic, are discussed as well as the role of the head radius and clearance. How friction, lubrication and wear are interconnected and most of all how they are specific for each loading and kinematic condition is highlighted. Thus, the significant differences in patients and their lifestyles account for the high dispersion of clinical data. Furthermore, such consideration has raised a new discussion on the most suitable in vitro tests for hip implants as simplified gait cycles can be too far from effective implant working conditions. In the third section, the trends of hip implants in the years from 2003 to 2012 provided by the National Joint Registry of England, Wales and Northern Ireland are summarized and commented on in a discussion.

[38]

Wang W, Zhang G L, Xie G X.

Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives

[J]. Appl. Surf. Sci., 2019, 498: 10

[本文引用: 1]

[39]

Qin Y L, Yang Y, Zhao P Y, et al.

Microstructures and photocatalytic properties of Biocl-rgo nanocomposites prepared by two-step hydrothermal method

[J]. Chinese Journal of Materials Research, 2020, 34(2): 92

DOI [本文引用: 1] " />

Utilizing the theory developed by the authors in an earlier publication, the influence of the ellipticity parameter, the dimensionless speed, load, and material parameters on minimum film thickness was investigated. The ellipticity parameter was varied from one (a ball on a plate configuration) to eight (a configuration approaching a line contact). The dimensionless speed parameter was varied over a range of nearly two orders of magnitude. The dimensionless load parameter was varied over a range of one order of magnitude. Conditions corresponding to the use of solid materials of bronze, steel, and silicon nitride and lubricants of paraffinic and naphthenic mineral oils were considered in obtaining the exponent in the dimensionless material parameter. Thirty-four different cases were used in obtaining the minimum film thickness formula given below as Hˉmin=3.63U0.68G0.49W?0.073(1?e?0.68k) A simplified expression for the ellipticity parameter was found where k=1.03RyRx0.64 Contour plots were also shown which indicate in detail the pressure spike and two side lobes in which the minimum film thickness occurs. These theoretical solutions of film thickness have all the essential features of the previously reported experimental observations based upon optical interferometry.

[43]

Mosey N J, Woo T K J T J O P C A.

A quantum chemical study of the unimolecular decomposition mechanisms of zinc dialkyldithiophosphate antiwear additives

[J]. Journal of Physical Chemistry A, 2004, 108(28): 6001

DOIURL [本文引用: 1]

[44]

Oztas T, Sen H S, Durgun E, et al.

Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment

[J]. Journal of Physical Chemistry C, 2014, 118(51): 30120

DOIURL [本文引用: 1]

[45]

Tang H, Cao K, Wu Q, et al.

Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles

[J]. Crystal Research and Technology, 2011, 46(2): 195

DOIURL

[46]

Li J F, Shi Q, Zhu H, et al.

Tribological and electrical behavior of Cu-based composites with addition of Ti-doped NbSe2 nanoplatelets

[J]. Ind. Lubr. Tribol., 2018, 70(3): 560

DOIURL [本文引用: 1] class="outline_tb" " />

Crystals are formed via nucleation and subsequent growth. In many cases, it is not easy to decide if nucleation occurs in the volume (homogeneous nucleation) or on a foreign surface, structure defects etc. (heterogeneous nucleation). This work is focused on crystal nucleation in a small supercooled liquid droplet when nuclei are formed in the volume or on the droplet surface simultaneously. The kinetic equations of homogeneous and heterogeneous nucleation are solved numerically to determine the size distribution of crystal nuclei and nucleation rate of both processes in Ni liquid droplet. The decrease of the number of atoms within the droplet volume in consequence of homogeneous and heterogeneous nucleation is taken into account. The number of nucleation sites on droplet surface decreases as new heterogeneous nuclei are formed. It is shown how both nucleation processes occur simultaneously.

[29]

Seehra M S, Narang V, Geddam U K, et al.

Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification

[J]. Carbon, 2017, 111: 380

PMID " />

設計合成了以具有放射狀介孔孔道(孔徑約2.6 nm)的介孔氧化硅(mSiO<sub>2</sub>)微球(粒徑約300 nm)為內(nèi)核、以CeO<sub>2</sub>納米顆粒為包覆層(殼厚為15~20 nm)的mSiO<sub>2</sub>/CeO<sub>2</sub>復合顆粒(粒徑在330~340 nm),使用場發(fā)射掃描電鏡、透射電鏡、X射線衍射、傅里葉轉(zhuǎn)換紅外光譜和氮氣吸脫附等手段表征了樣品的結(jié)構(gòu) 結(jié)果表明,使用以實心氧化硅(sSiO<sub>2</sub>)為內(nèi)核的sSiO<sub>2</sub>/CeO<sub>2</sub>復合顆粒拋光的熱氧化硅片其表面粗糙度均方根值(Root-mean-square roughness, RMS)為0.309 nm,材料的去除率(Material removal rate, MRR)為24 nm/min) mSiO<sub>2</sub>/CeO<sub>2</sub>復合顆粒有利于得到更低的氧化硅片拋光表面粗糙度(RMS=0.267 nm)和更高的拋光速率(MRR=45 nm/min),且能避免出現(xiàn)劃痕等機械損傷 SiO<sub>2</sub>/CeO<sub>2</sub>復合顆粒中的氧化硅內(nèi)核結(jié)構(gòu),對其拋光特性有明顯的影響

[31]

Wang D J, Zhang M Q, Ji Z S, et al.

Process and properties of graphene reinforced Mg-based composite prepared by in-situ method

[J]. Chinese Journal of Materials Research, 2021, 35(6): 474

王殿君, 張明秋, 吉澤升, 張吉生 等.

原位自生法制備石墨烯增強鎂基復合材料的工藝和性能

[J]. 材料研究學報, 2021, 35(6): 474

[32]

Nanda S S, Kim M J, Yeom K S, et al.

Raman spectrum of graphene with its versatile future perspectives

[J]. Trac-Trends. Anal. Chem., 2016, 80: 125

[33]

Yang H, Li F, Shan C, et al.

Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement

[J]. J. of Mater. Chem., 2009, 19(26): 4632

[34]

Wan Y J, Gong L X, Tang L C, et al.

Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide

[J]. Compos. Pt. A.-Appl. Sci. Mannf., 2014, 64: 79

[35]

Gulzar M, Masjuki H H, Kalam M A, et al.

Tribological performance of nanoparticles as lubricating oil additives

[J]. Journal of Nanoparticle Research, 2016, 18(8): 223

[36]

Guo J D, Peng R L, Du H, et al.

The Application of nano-MoS2 quantum dots as liquid lubricant additive for tribological behavior improvement

[J]. Nanomaterials, 2020, 10(2): 12

" />

Hip arthroplasty can be considered one of the major successes of orthopedic surgery, with more than 350000 replacements performed every year in the United States with a constantly increasing rate. The main limitations to the lifespan of these devices are due to tribological aspects, in particular the wear of mating surfaces, which implies a loss of matter and modification of surface geometry. However, wear is a complex phenomenon, also involving lubrication and friction. The present paper deals with the tribological performance of hip implants and is organized in to three main sections. Firstly, the basic elements of tribology are presented, from contact mechanics of ball-in-socket joints to ultra high molecular weight polyethylene wear laws. Some fundamental equations are also reported, with the aim of providing the reader with some simple tools for tribological investigations. In the second section, the focus moves to artificial hip joints, defining materials and geometrical properties and discussing their friction, lubrication and wear characteristics. In particular, the features of different couplings, from metal-on-plastic to metal-on-metal and ceramic-on-ceramic, are discussed as well as the role of the head radius and clearance. How friction, lubrication and wear are interconnected and most of all how they are specific for each loading and kinematic condition is highlighted. Thus, the significant differences in patients and their lifestyles account for the high dispersion of clinical data. Furthermore, such consideration has raised a new discussion on the most suitable in vitro tests for hip implants as simplified gait cycles can be too far from effective implant working conditions. In the third section, the trends of hip implants in the years from 2003 to 2012 provided by the National Joint Registry of England, Wales and Northern Ireland are summarized and commented on in a discussion.

[38]

Wang W, Zhang G L, Xie G X.

Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives

[J]. Appl. Surf. Sci., 2019, 498: 10

[39]

Qin Y L, Yang Y, Zhao P Y, et al.

Microstructures and photocatalytic properties of Biocl-rgo nanocomposites prepared by two-step hydrothermal method

[J]. Chinese Journal of Materials Research, 2020, 34(2): 92

" />

Utilizing the theory developed by the authors in an earlier publication, the influence of the ellipticity parameter, the dimensionless speed, load, and material parameters on minimum film thickness was investigated. The ellipticity parameter was varied from one (a ball on a plate configuration) to eight (a configuration approaching a line contact). The dimensionless speed parameter was varied over a range of nearly two orders of magnitude. The dimensionless load parameter was varied over a range of one order of magnitude. Conditions corresponding to the use of solid materials of bronze, steel, and silicon nitride and lubricants of paraffinic and naphthenic mineral oils were considered in obtaining the exponent in the dimensionless material parameter. Thirty-four different cases were used in obtaining the minimum film thickness formula given below as Hˉmin=3.63U0.68G0.49W?0.073(1?e?0.68k) A simplified expression for the ellipticity parameter was found where k=1.03RyRx0.64 Contour plots were also shown which indicate in detail the pressure spike and two side lobes in which the minimum film thickness occurs. These theoretical solutions of film thickness have all the essential features of the previously reported experimental observations based upon optical interferometry.

[43]

Mosey N J, Woo T K J T J O P C A.

A quantum chemical study of the unimolecular decomposition mechanisms of zinc dialkyldithiophosphate antiwear additives

[J]. Journal of Physical Chemistry A, 2004, 108(28): 6001

[44]

Oztas T, Sen H S, Durgun E, et al.

Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment

[J]. Journal of Physical Chemistry C, 2014, 118(51): 30120

[45]

Tang H, Cao K, Wu Q, et al.

Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles

[J]. Crystal Research and Technology, 2011, 46(2): 195

[46]

Li J F, Shi Q, Zhu H, et al.

Tribological and electrical behavior of Cu-based composites with addition of Ti-doped NbSe2 nanoplatelets

[J]. Ind. Lubr. Tribol., 2018, 70(3): 560



This paper aims to clarify the size and morphology of transition metal dichalcogenides has an impact on lubrication performance of Cu-based composites. This study is intended to show that Cu-based electrical contact materials containing Nb0.91Ti0.09Se2 have better electrical and tribological properties than those containing NbSe2. The tribological properties of Cu-based with different Ti-dopped NbSe2 content were also discussed.

[47]

Wang Y N, Wan Z P, Lu L S, et al.

Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles

[J]. Tribology International, 2018, 124: 10

[48]

Nguyen D, Xie X D, Wen G, et al.

Research on tribological behavior of TiN nanoparticles as lubricating additive

[J]. Lubrication Engineering, 2015, 40(9): 42

阮亭綱, 謝先東, 文 廣 等.

納米TiN潤滑油添加劑的摩擦學性能研究

[J]. 潤滑與密封, 2015, 40(9): 42

[49]

Li C J, Tang W W, Tang X Z, et al.

A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems

[J]. Tribology International, 2022, 167: 12

Application of titanium alloy in airplane

1

2009

聲明:
“Graphene/SiO2 納米復合材料作為水基潤滑添加劑的摩擦學性能” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學習研究,如用于商業(yè)用途,請聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)
分享 0
         
舉報 0
收藏 0
反對 0
點贊 0
全國熱門有色金屬技術(shù)推薦
展開更多 +

 

中冶有色技術(shù)平臺微信公眾號
了解更多信息請您掃碼關(guān)注官方微信
中冶有色技術(shù)平臺微信公眾號中冶有色技術(shù)平臺

最新更新技術(shù)

報名參會
更多+

報告下載

第二屆中國微細粒礦物選礦技術(shù)大會
推廣

熱門技術(shù)
更多+

衡水宏運壓濾機有限公司
宣傳
環(huán)磨科技控股(集團)有限公司
宣傳

發(fā)布

在線客服

公眾號

電話

頂部
咨詢電話:
010-88793500-807
專利人/作者信息登記