復合材料輕質(zhì)高強且可設計性好,在航空航天、交通運輸、建筑和電子工業(yè)等諸多領域得到了廣泛的應用
隨著復合材料應用范圍的擴大,對其強度和安全性的要求更高
復合材料在高頻周期載荷作用下易發(fā)生受迫振動而導致脆性斷裂,已成為其疲勞失效的主要形式之一
其原因是,共振產(chǎn)生的能量不能極快耗散而使材料的性能降低和發(fā)生疲勞損傷[1]
對復合材料進行組元和結(jié)構優(yōu)化,在保持輕質(zhì)高強的同時實現(xiàn)能量快速轉(zhuǎn)化和耗散(高阻尼特性),可顯著提高其減振性能和構件的安全可靠性[2,3]
這已成為先進復合材料結(jié)構與功能一體化的重要發(fā)展方向[4~6]
以
碳納米管和
石墨烯為代表的新型納米炭材料有獨特的納米尺度、較高的本征力學強度和優(yōu)異的導熱/導電特性,將其添加到聚合物基體中可顯著提高復合材料的力學強度[7]
同時,納米復合材料的豐富界面有助于產(chǎn)生界面滑移(能量耗散),從而提高復合材料的阻尼性能[8]
值得指出的是,界面滑移顯著依賴復合材料組元間界面的相互作用[9, 10]
強共價鍵結(jié)合有利于應力傳遞但是顯著抑制界面的滑移,使能量耗散和阻尼性能降低[11];而弱范德華力有助于能量耗散,但是使力學強度降低[12]
因此,優(yōu)化調(diào)控組元間的界面相互作用是制備兼具高強高阻尼特性復合材料的關鍵
與共價鍵和范德華力相比,氫鍵的鍵能(25~40 kJ·mol-1)適中且具有獨特的動態(tài)斷裂/再生可逆特性[13,14],可用于制備自愈合或自修復功能復合材料[15,16]
其作用機制的本源,是氫鍵的可逆斷裂和再生分別對應能量的吸收和釋放
將氫鍵結(jié)構引入到復合材料界面中,受力變形過程中的界面摩擦滑移以及界面氫鍵的斷裂/再生可產(chǎn)生大量的能量耗散,有望顯著提高復合材料力學強度和阻尼性能
為了制備高強高阻尼石墨烯/聚合物復合材料,本文提出在復合材料內(nèi)部引入界面多重氫鍵結(jié)構,選用石墨烯(Gr)和聚苯乙烯-乙烯-丁二烯-苯乙烯彈性體(SEBS)分別為納米增強填料和聚合物基體,接枝修飾引入氫鍵單元,用溶液共混與熱壓成型工藝制備石墨烯/SEBS復合材料
1 實驗方法1.1 實驗用材料
實驗用材料:石墨烯原料,是一種用電解氧化法制備的氧化石墨烯(GO)漿料(固含量為1%),石墨烯層數(shù)小于3層,片徑尺寸為0.1~3 μm;苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)的型號為G1652,苯乙烯含量(質(zhì)量分數(shù))為30%,數(shù)均分子量Mn=70.3 kg·mol-1,密度為0.91 g·cm-3;化學助劑有馬來酸酐(MAH, AR)、3-氨基-1,2,4三唑(ATA, CP)、過氧化二異丙苯(DCP, CP)、1-乙基-(3-二甲基氨基丙基)碳酰二亞胺鹽酸鹽(EDC, CP)、二甲苯(Xylene, AR)、N,N-二甲基甲酰胺(DMF, AR)以及維生素C(Vitamin C, AR)
1.2 石墨烯與SEBS的接枝改性以及復合材料的制備
石墨烯的表面改性:將GO漿料20 g稀釋至濃度為2 mg·mL-1,加入2 g催化劑EDC、0.3 g改性劑ATA,機器超聲分散均勻后在90℃反應2.5 h,ATA的氨基分別與GO的環(huán)氧基團、羧基發(fā)生親核取代與酰胺化反應[17,18],在GO表面引入ATA氫鍵單元;隨后加入1 g還原劑維生素C并在50℃反應24 h,以還原去除GO表面未反應的活性氧基團[19],將產(chǎn)物洗滌、冷凍干燥后得到ATA接枝改性的石墨烯(m-Gr)
SEBS的接枝改性:將60 g的SEBS與12 g改性劑MAH加入二甲苯溶劑中至完全溶解,將其升溫至130℃后逐滴加入5 g引發(fā)劑DCP,回流反應4 h使馬來酸酐基團接枝到SEBS[20]
隨后將其與0.073 g的ATA在二甲苯-DMF溶劑中混合,然后使其在80℃反應2.5 h
馬來酸酐基團開環(huán)反應后準備出ATA接枝改性的SEBS(m-SEBS)[21]
將m-Gr與m-SEBS加入二甲苯-DMF有機溶劑中,充分混合后倒入乙醇溶液中使復合物沉淀析出,將其過濾和鼓風干燥后放入模具中在160℃、15 MPa條件下熱壓成型25 min,自然冷卻并保壓2 h后得到石墨烯/SEBS復合材料(Gr/SEBS)
復合材料中石墨烯的添加量(質(zhì)量分數(shù))分別為0、0.1%、0.2%、0.5%和0.75 %
1.3 結(jié)構和性能表征
用Bruker Tensor 27型紅外光譜儀測試改性前后的石墨烯與SEBS、以及復合材料的化學基團;用原位變溫紅外光譜技術(Nicolet iS10-iZ10)表征石墨烯/SEBS復合材料的氫鍵結(jié)構以及其在30~210℃范圍內(nèi)的結(jié)構變化
參照GB/T 528-2009用電子萬能材料試驗機(5ST, Tinius Olsen)測試復合材料的拉伸-回復循環(huán)性能,拉伸速率為50 mm·min-1,最大拉伸應變控制為400%
對循環(huán)拉伸應力應變曲線進行面積積分,計算循環(huán)過程中的能量滯后損耗(MJ·m-3)
用動態(tài)熱機械分析儀(DMA, TA-Q800)測試復合材料的動態(tài)力學拉伸性能
測試條件為:單軸拉伸模式,預加載力0.01 N,升溫速率3℃·min-1,頻率1 Hz,動態(tài)應變3%,樣品尺寸為14 mm×3 mm×1 mm
2 結(jié)果和討論2.1 石墨烯/SEBS復合材料的界面氫鍵結(jié)構
圖1給出了石墨烯/SEBS復合材料的界面氫鍵結(jié)構示意圖
從圖1a可見,SEBS基體為苯乙烯-乙烯-丁二烯的三元嵌段共聚物,具有飽和柔性分子鏈特征,無法與石墨烯產(chǎn)生強界面相互作用
對其進行自由基取代反應接枝馬來酸酐(MAH)基團[22,23],進而與改性劑ATA的氨基發(fā)生開環(huán)反應,可得帶有氫鍵結(jié)構單元(酰胺、三唑和羧酸基團)的ATA改性SEBS(m-SEBS)[21]
圖1b給出了石墨烯的表面改性示意圖
可以看出,氧化石墨烯(GO)表面的環(huán)氧基和羧基可與ATA的氨基分別發(fā)生親核取代與酰胺化反應[18],從而使石墨烯表面接枝ATA(m-Gr)并引入氫鍵結(jié)構單元(酰胺與三唑基團)
由于m-Gr與m-SEBS均含有氫鍵結(jié)構單元,N和O原子可作為氫鍵受體與鄰近的H原子間發(fā)生氫鍵相互作用(圖1c),從而在石墨烯/SEBS復合材料界面處形成多重氫鍵結(jié)構,實現(xiàn)組元間的有效應力傳遞和力學性能的顯著提高[24];同時,界面氫鍵結(jié)構易于在復合材料變形過程中發(fā)生斷裂與再生,從而產(chǎn)生高能量耗散和提高阻尼性能
圖1
圖1石墨烯/SEBS
復合材料的界面氫鍵結(jié)構示意圖
Fig.1Schematics of interfacial hydrogen bonds in Gr/SEBS composites (a) ATA-grafted SEBS, (b) ATA-modified graphene, and (c) the interfacial hydrogen bonds between components
2.2 基團的結(jié)構
圖2給出了石墨烯/SEBS復合材料和組元改性前后的紅外光譜
從圖2a可見,與改性前的GO和SEBS相比,改性后的m-Gr和m-SEBS均在紅外光譜中1690和1540 cm-1附近出現(xiàn)明顯的紅外特征峰,分別對應酰胺鍵的C=O與ATA的C-N=C的特征振動峰[25~28];同時,在1260 cm-1出現(xiàn)C-N的特征峰[29, 30]
這些結(jié)果均表明,ATA已經(jīng)成功接枝到SEBS與石墨烯表面
同時,在m-SEBS的譜中可見1726 cm-1處對應的C=O特征振動峰,來源于MAH與ATA開環(huán)反應形成的羧酸基團[21]
在復合體系內(nèi)存在酰胺、三唑、羧酸基團,彼此之間可形成界面氫鍵結(jié)合
此外,與m-Gr和m-SEBS相比,石墨烯/SEBS復合材料的譜中沒有新的吸收峰,表明組元間沒有形成新的共價鍵,而是通過氫鍵相結(jié)合[28]
圖2b給出了用變溫紅外技術表征的石墨烯/SEBS復合材料的氫鍵結(jié)構特征
可以看出,隨著溫度的提高羧酸、酰胺、與三唑基團對應的特征峰都出現(xiàn)不同程度的偏移
1726 cm-1處的羧酸基C=O特征峰、1690 cm-1處的酰胺鍵C=O特征峰、1540 cm-1處對應的C-N=C振動峰分別偏移至1733 cm-1、1682 cm-1和1518 cm-1,與文獻[13,21]報道的結(jié)果一致
振動特征峰的偏移可歸因于變溫過程中氫鍵的斷裂解離引起的相應特征基團振動頻率的變化[31],是體系內(nèi)存在氫鍵的直接證據(jù)
值得指出的是,氫鍵具有動態(tài)可逆、對溫度及應力響應敏感的特性,易于在外界作用下發(fā)生可逆斷裂進而產(chǎn)生能量耗散,從而使復合材料具有較高的阻尼性能[13]
同時,氫鍵的可逆斷裂/再生特性也有利于材料能量的持續(xù)耗散和保持較高的力學性能
圖2
圖2GO、m-Gr、SEBS、m-SEBS和石墨烯/SEBS復合材料的紅外光譜和變溫原位紅外光譜
Fig.2Infrared spectra of the GO, m-Gr, SEBS, m-SEBS, and Gr/SEBS composites (a) and In-situ infrared spectra (b) of Gr/SEBS composites at variable temperatures
2.3 石墨烯/SEBS復合材料的循環(huán)拉伸特性
圖3給出了石墨烯/SEBS復合材料在循環(huán)拉伸過程中的力學行為
從圖3a可見,石墨烯/SEBS復合材料有比純SEBS更高的拉伸模量和更明顯的滯后回線特征,表明石墨烯和氫鍵網(wǎng)絡能顯著提高材料的力學性能和能量耗散
從圖3b可見,隨著石墨烯含量的提高復合材料的拉伸模量不斷提高
石墨烯含量(質(zhì)量分數(shù),下同)為0.75%的復合材料其拉伸模量可達12.2 MPa,比純SEBS(4.6 MPa)提高了165%
這種力學性能的顯著提高主要可歸因于組分間較強的界面氫鍵結(jié)合和石墨烯的高本征力學強度,能有效傳遞應力并承受外界載荷[32]
從圖3c中對應的拉伸應力數(shù)據(jù)也可見相同的力學性能的增強效果
根據(jù)滯后回線的面積可評價循環(huán)過程中的能量損耗[33]
從圖3d可以看出,石墨烯/SEBS復合材料具有比純SEBS更明顯的滯后響應特征和更高的滯后損耗值
0.75%石墨烯/SEBS復合材料的滯后損耗值為8.93 MJ·m-3,比純SEBS的2.65 MJ·m-3提高了237%,表明石墨烯和界面氫鍵能顯著提高復合材料的能量耗散與阻尼性能
一方面,石墨烯和氫鍵的引入顯著抑制了聚合物分子鏈的運動,可產(chǎn)生明顯的滯后現(xiàn)象;另一方面,石墨烯/SEBS復合材料的豐富界面和界面氫鍵網(wǎng)絡的可逆斷裂/再生特性使復合材料在外力作用下的變形過程中通過大量的界面滑移與氫鍵斷裂重排耗散更多的能量,從而表現(xiàn)出顯著的滯后損耗及能量耗散能力
圖3
圖3石墨烯/SEBS復合材料的循環(huán)拉伸特性
Fig.3Cyclic tensile mechanical behavior of Gr/SEBS composites (a) cyclic tensile stress-strain curve, (b) tensile modulus, (c) tensile stress at 400% strain, and (d) hysteresis loss
2.4 石墨烯/SEBS復合材料的動態(tài)力學性能
圖4給出了用動態(tài)熱機械分析儀(DMA)測量的復合材料的動態(tài)力學性能
從圖4a可見,所有復合材料的
儲能模量均顯著比純SEBS的高,且隨著石墨烯含量的提高復合材料的儲能模量隨之提高
這個結(jié)果與圖3b中復合材料拉伸模量的變化趨勢一致
石墨烯含量為0.75%的石墨烯/SEBS復合材料,其常溫下的儲能模量達到20.83 MPa,比純SEBS的9.58 MPa提高了117%(圖4d),表現(xiàn)出顯著的力學增強特性
圖4b~c分別給出了復合材料的損耗模量和損耗因子(tanδ)隨溫度的變化曲線,分別反映了復合材料的能量耗散能力和阻尼性能對溫度變化的響應
可以看出,石墨烯/SEBS復合材料比純SEBS的損耗模量和損耗因子更高
這表明,石墨烯和氫鍵網(wǎng)絡的存在使復合材料在動態(tài)變形情況下具有更高的能量耗散能力,其能量耗散的變化趨勢也與圖3d中循環(huán)拉伸測試滯后損耗的變化趨勢一致
復合材料的常溫能量損耗,主要可歸因于在外加載荷作用下氫鍵界面的可逆斷裂/再生
隨著溫度的提高氫鍵網(wǎng)絡對石墨烯及聚合物的束縛減弱,聚合物分子鏈段的運動能力增大并通過石墨烯片層的摩擦滑移協(xié)同界面氫鍵的斷裂不斷耗散能量,使復合材料損耗模量及損耗因子值得以顯著提高
從圖4d可見,0.75%石墨烯/SEBS復合材料的損耗因子值為0.51,比純SEBS的0.36提高了42%,表明石墨烯和界面氫鍵網(wǎng)絡的引入能顯著提高復合材料的阻尼性能
石墨烯/SEBS復合材料力學性能和阻尼的顯著增強,主要歸因于石墨烯與SEBS的界面氫鍵結(jié)合、高效應力傳遞、界面滑移、以及氫鍵可逆斷裂/再生過程中的顯著能量耗散
圖4
圖4石墨烯/SEBS復合材料的儲能模量、損耗模量、損耗因子以及石墨烯含量不同的成立的儲能模量與損耗因子
Fig.4Dynamic mechanical analyses of Gr/SEBS composites (a) storage modulus, (b) loss modulus, (c) tanδ, and (d) the storage modulus and damping ratio against graphene loadings
3 結(jié)論
(1) 在石墨烯和SEBS分子鏈段分別接枝氫鍵單元ATA在復合材料組元界面構建了多重氫鍵網(wǎng)絡,可制備具有氫鍵網(wǎng)絡結(jié)構的石墨烯/SEBS復合材料
(2) 石墨烯/SEBS復合材料中的石墨烯及氫鍵網(wǎng)絡顯著提高了復合材料的力學強度和阻尼性能,石墨烯/SEBS復合材料的彈性模量、滯后損耗、損耗因子分別比SEBS提高了165%、237%和42%
(3) 石墨烯/SEBS復合材料的力學和阻尼性能的同時顯著提高,主要歸因于石墨烯與SEBS間氫鍵網(wǎng)絡的形成、高效應力傳遞、界面滑移以及氫鍵可逆斷裂/再生過程中的能量耗散
參考文獻
View Option 原文順序文獻年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Zhou X Q, Yu D Y, Shao X Y, et al.
Research and applications of viscoelastic vibration damping materials: A review
[J]. Compos. Struct., 2016, 136: 460
DOIURL [本文引用: 1]
[2]
Zeng Y, Ci L J, Carey B J, et al.
Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites
[J]. ACS Nano, 2010, 4(11): 6798
DOIPMID [本文引用: 1] " />
Direct growth of graphene on the metal surface opens a door for obtaining high-performance composites in a simple way. In order to obtain both high strength and enhanced damping property of the porous metal, we prepared graphene-coated nickel hybrid foams by chemical vapor deposition technique and investigated the static and dynamic mechanical properties using a dynamic mechanical analyzer and vibration testing systems in detail. We found that the presence of graphene layers could greatly improve both mechanical strength and damping properties of nickel foams. The graphene-coated nickel hybrid foams exhibited high yield strength, compressive modulus, and damping ratio, increased by 46, 22, and 53% in comparison with those of nickel foams. Such significant graphene reinforcement in mechanical and damping properties is mainly attributed to the strong interfacial bonding, remarkable confinement effect, and rich interfaces in hybrid foams. By virtue of its high mechanical strength and enhanced damping properties, the graphene/nickel hybrid foams have great potential to be used as multifunctional composite materials in many fields.
[4]
Zhao J N, Wang F L, Zhang X, et al.
Vibration damping of carbon nanotube assembly materials
[J]. Adv. Eng. Mater., 2018, 20(3): 1700647
DOIURL [本文引用: 1]
[5]
Meaud J, Sain T, Yeom B, et al.
Simultaneously high stiffness and damping in nanoengineered microtruss composites
[J]. ACS Nano, 2014, 8(4): 3468
DOIPMID " />
Diketopyrrolopyrrole (DPP)-based donor-acceptor conjugated polymers, with increasing amount of weak H-bonding units, namely 2,6-pyridinedicarboxamide (PDCA), inserted as end groups in alkyl side chains were prepared and investigated. In contrast to previously reported DPP polymers containing PDCA units as conjugation breakers along the polymer backbone, PDCA in the alkyl side chains readily produced almost quantitative formation of intermolecular H-bonding even at low PDCA unit content (<10 mol %) as shown by Fourier transform infrared spectroscopy (FTIR). The efficient intermolecular H-bonding was further supported by the appearance of a pronounced vibronic shoulder in the UV-vis spectra and a reduction of interlamellar spacing (from 24.02 to 22.87 angstrom) compared to the neat DPP polymer. Increasing mol % of PDCA units in side chains of DPP conjugated polymers also has a clear effect on the thermal and mechanical properties of the films as investigated by dynamic mechanical analysis (DMA). Polymers with a high loading of PDCA showed a linear increase in both tan delta intensity and temperature at which softening of film cross-linking occurs. In particular, at a comparable mol %, polymers with PDCA units along the conjugated backbone showed a lower transition intensity and on average a 10-20 degrees C higher temperature required for H-bonding breaking. FTIR coupled with crack onset measurements showed that H-bonding breaking during tensile deformation happens only at strains close to crack onset. All these observations suggest that molecular engineering of conjugated polymers bearing H-bonding units has a strong influence on microstructure, thermal and mechanical properties of solution processed films, and final energy dissipation mechanisms in stretchable electronics applications.
[15]
Campanella A, Dohler D, Binder W H.
Self-healing in supramolecular polymers
[J]. Macromol. Rapid Comm., 2018, 39(17): 1700739
DOIURL [本文引用: 1]
[16]
Shao C Y, Chang H L, Wang M, et al.
High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds
[J]. ACS Appl. Mater. Inter., 2017, 9(34): 28305
DOIURL [本文引用: 1]
[17]
Lee D W, Hong T K, Kang D, et al.
Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides
[J]. J. Mater. Chem., 2011, 21(10): 3438
DOIURL [本文引用: 1]
[18]
Che J F, Shen L Y, Xiao Y H.
A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion
[J]. J. Mater. Chem., 2010, 20(9): 1722
DOIURL [本文引用: 2]
[19]
Zhang J L, Yang H J, Shen G X, et al.
Reduction of graphene oxide via L-ascorbic acid
[J]. Chem. Commun., 2010, 46(7): 1112
DOIURL [本文引用: 1]
[20]
Park H S, Hong C K.
Anion exchange membrane based on sulfonated poly (styrene-ethylene-butylene-styrene) copolymers
[J]. Polymers-Basel, 2021, 13(10): 1669
[本文引用: 1]
[21]
Liu J, Wang S, Tang Z H, et al.
Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer
[J]. Macromolecules, 2016, 49(22): 8593
DOIURL [本文引用: 4]
[22]
Wang J F, Jin X X, Zhang X M, et al.
Effect of tunable styrene content on achieving high-performance poly(styrene-b-ethylene-ran-butylene-b-styrene)/graphene oxide nanocomposites
[J]. Compos. Sci. Technol., 2018, 164: 229
DOIURL [本文引用: 1]
[23]
Clark D C, Baker W E, Whitney R A.
Peroxide-initiated comonomer grafting of styrene and maleic anhydride onto polyethylene: Effect of polyethylene microstructure
[J]. J. Appl. Polym. Sci., 2001, 79(1): 96
DOIURL [本文引用: 1]
[24]
Chino K, Ashiura M.
Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks
[J]. Macromolecules, 2001, 34(26): 9201
DOIURL [本文引用: 1]
[25]
Zhan Y Q, Yang X L, Guo H, et al.
Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability
[J]. J. Mater. Chem., 2012, 22(12): 5602
DOIURL [本文引用: 1]
[26]
Tetsuka H, Asahi R, Nagoya A, et al.
Optically tunable amino-functionalized graphene quantum dots
[J]. Adv. Mater., 2012, 24(39): 5333
DOIURL
[27]
Mei J, Liu W F, Huang J H, et al.
Lignin-reinforced ethylene-propylene-diene copolymer elastomer via hydrogen bonding interactions
[J]. Macromol. Mater. Eng., 2019, 304(4): 1800689
DOIURL
[28]
Zeng S J, Ye L, Yan S J, et al.
Amphibious hybrid nanostructured proton exchange membranes
[J]. J. Membrane Sci., 2011, 367(1-2): 78
DOIURL [本文引用: 2]
[29]
Zhan Y Q, Yang X L, Guo H, et al.
Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability
[J]. J. Mater. Chem., 2012, 22(12): 5602
DOIURL [本文引用: 1]
[30]
Kim N H, Kuila T, Lee J H.
Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application
[J]. J. Mater. Chem. A, 2013, 1(4): 1349
DOIURL [本文引用: 1]
[31]
Xu K M, Zhang F S, Zhang X L, et al.
Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties
[J]. J. Mater. Chem. A, 2014, 2(22): 8545
DOIURL [本文引用: 1]
[32]
Wang W Y, Liu Y M, Jin X, et al.
Effect of polypyrrole modified carbon fiber on interfacial property of composite PPy-carbon fiber/epoxy
[J]. Chin. J. Mater. Res, 2017, 32(3): 209
[本文引用: 1]
王聞宇, 劉亞敏, 金 欣 等.
聚吡咯修飾
碳纖維/環(huán)氧樹脂復合材料的界面剪切強度
[J]. 材料研究學報, 2018, 32(3): 209
DOI [本文引用: 1]
應用等離子體技術對碳纖維(CF)表面進行預處理,然后進行液相沉積聚吡咯處理
使用X射線光電子能譜儀、原子力顯微鏡(AFM)、掃描電子顯微鏡(SEM)和傅立葉紅外光譜儀等手段對碳纖維表面形態(tài)和結(jié)構進行分析與表征,并進行單纖維界面剪切強度試驗和SEM觀測,研究了
碳纖維復合材料的界面粘結(jié)性能
結(jié)果表明,等離子體預處理碳纖維沉積聚吡咯(PPy)使單纖維界面剪切強度提高了259.3%
分析結(jié)果表明,界面剪切強度的提高與纖維/樹脂間的機械鉚合和界面的作用力有關
等離子體預處理使碳纖維表面的羧基基團增多,在羧基和PPy之間形成氫鍵,從而提高了碳纖維復合材料的界面性能
[33]
Li C J, Yuan Z, Ye L.
Fcile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: highly reinforcing effect and improvement mechanism of sealing resilience
[J]. Compos. Part A-Appl. S., 2019, 126: 105580
DOIURL [本文引用: 1]
Research and applications of viscoelastic vibration damping materials: A review
1
2016
聲明:
“基于界面氫鍵結(jié)構的石墨烯/聚合物復合材料的阻尼性能” 該技術專利(論文)所有權利歸屬于技術(論文)所有人。僅供學習研究,如用于商業(yè)用途,請聯(lián)系該技術所有人。
我是此專利(論文)的發(fā)明人(作者)