国产在线一区二区不卡|在线观看中文字幕一区|亚洲中文无码h在线观看|欧美 亚洲 图色 另类|免费人成视频x8x8入口|国产福利观看天堂素人约啪|人妻无码专区一专区二专区三|国产婷婷成人久久AV免费高清

合肥金星智控科技股份有限公司
宣傳

位置:中冶有色 >

有色技術(shù)頻道 >

> 復(fù)合材料技術(shù)

> TiZr基非晶/TC21雙層復(fù)合材料的制備和力學(xué)性能

TiZr基非晶/TC21雙層復(fù)合材料的制備和力學(xué)性能

905   編輯:中冶有色技術(shù)網(wǎng)   來源:林師峰,徐東安,莊艷歆,張海峰,朱正旺  
2024-04-16 16:57:50
非晶合金具有高強(qiáng)度、高硬度和高彈性極限等優(yōu)異性能,受到了極大的關(guān)注[1~3] 但是,非晶合金沒有位錯(cuò)等缺陷[1, 4, 5],其室溫塑性變形主要集中在極窄的剪切帶[6],使其表現(xiàn)出脆性斷裂 為了克服非晶合金的脆性斷裂,可在其中生成合適的第二相 第二相能阻礙剪切帶的擴(kuò)展并誘發(fā)剪切帶多重化、分支、相互交叉,可改善其室溫塑性[1, 7, 8] 依據(jù)此原理,可制備出各種非晶復(fù)合材料 例如:Johnson等用半固態(tài)處理方法制備出Ti基[9, 10],Zr基[11, 12],CuZr基[13]等非晶復(fù)合材料;張海峰等[14~17]用熔體?滲法制備出一系列難熔金屬增強(qiáng)非晶復(fù)合材料;李毅等[18, 19]、喬珺威等[20, 21]和陳光等[22, 23]用Bridgman方法調(diào)控溫度梯度和凝固速率開發(fā)出一系列具有不同體積分?jǐn)?shù)和尺寸的晶態(tài)相增強(qiáng)非晶復(fù)合材料 這些非晶復(fù)合材料,都具有良好的室溫壓縮塑性 根據(jù)在非晶基體里引入晶態(tài)相的方式,非晶復(fù)合材料可分為外加型非晶復(fù)合材料和內(nèi)生型非晶復(fù)合材料[24] 內(nèi)生型非晶復(fù)合材料,是在熔體凝固過程中原位析出晶態(tài)相或者非晶合金進(jìn)行適當(dāng)?shù)臒崽幚硎狗蔷Ш辖鹁Щ龀鼍B(tài)相[20] 這種類型的非晶復(fù)合材料最大的優(yōu)點(diǎn)是其內(nèi)生晶態(tài)相是原位生成的,與非晶基體界面結(jié)合良好 在載荷作用下,內(nèi)生晶態(tài)相能有效地抑制剪切帶的擴(kuò)展,加劇剪切帶的相互作用,從而使非晶合金的室溫塑性顯著提高 但是,內(nèi)生型非晶復(fù)合材料對(duì)成分、冷卻速率和熱處理溫度等因素極其敏感,較難精準(zhǔn)地調(diào)控非晶復(fù)合材料中晶態(tài)相的體積分?jǐn)?shù)、尺寸和形貌 特別是,內(nèi)生型非晶復(fù)合材料的應(yīng)用非常有限 外加型非晶復(fù)合材料,是外加纖維、顆?;蜴u絲等晶態(tài)相增強(qiáng)非晶復(fù)合材料[25] 在工程應(yīng)用領(lǐng)域,根據(jù)實(shí)際需要可設(shè)計(jì)出不同體積分?jǐn)?shù)、外加晶態(tài)相和形態(tài)的非晶復(fù)合材料 這表明,外加型非晶復(fù)合材料的結(jié)構(gòu)可靈活調(diào)控 外加型非晶復(fù)合材料的這些優(yōu)點(diǎn),使其在工程應(yīng)用領(lǐng)域倍受關(guān)注 但是,在外加型非晶復(fù)合材料中非晶相與晶態(tài)相不相容,在非晶基體與外加相的界面處容易生成金屬間化合物 這導(dǎo)致其塑性變形不如內(nèi)生型非晶復(fù)合材料,甚至惡化其性能

TiZr基非晶合金和鈦合金都是輕質(zhì)合金,因此鈦合金增韌的Ti基非晶復(fù)合材料具有潛在的應(yīng)用價(jià)值 ZT3非晶合金[26] (名義成分:Ti32.8Zr30.2Ni5.3Cu9Be22.7,原子分?jǐn)?shù),%)的非晶形成能力極高,其壓縮斷裂強(qiáng)度高達(dá)1800 MPa TC21鈦合金(名義成分:Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-0.1Si,質(zhì)量分?jǐn)?shù),%)的室溫塑性良好[27, 28] 鑒于此,本文選取ZT3非晶合金和TC21鈦合金設(shè)計(jì)ZT3/TC21雙層復(fù)合材料,研究制備工藝參數(shù)對(duì)這種雙層復(fù)合材料界面結(jié)構(gòu)和力學(xué)性能的影響

1 實(shí)驗(yàn)方法

用純度高于99.8%(質(zhì)量分?jǐn)?shù))的純金屬按Ti32.8Zr30.2Ni5.3Cu9Be22.7(ZT3,原子分?jǐn)?shù),%)配制100 g金屬混合物 將這些金屬混合物在高純氬氣保護(hù)下進(jìn)行電弧熔煉 重復(fù)熔煉4次,得到ZT3母合金錠 從TC21鈦合金上線切割出尺寸為80 mm×10 mm×5 mm的條樣并將其磨拋,然后用無水乙醇超聲清洗 將處理干凈的TC21鈦合金條樣固定在尺寸為100 mm×10 mm×10 mm模具的一側(cè),在模具的另一側(cè)放入適量的ZT3母合金錠 然后,將模具置于管式電阻爐中并抽真空,待真空度達(dá)到3.5 kPa時(shí)加熱母合金錠到選定的溫度(1073、1123和1173 K),充入氬氣并保溫3 min以使母合金熔體滲入并填滿模具的空隙 最后將模具水淬,制備出ZT3/TC21雙層復(fù)合材料

用銅模吸鑄法將ZT3母合金制成直徑為2 mm的棒材,并從中截取直徑和高都為2 mm的圓柱作為熔滴棒材 再截取直徑為8 mm、厚度為2 mm的TC21鈦合金片并將其磨拋,用無水乙醇超聲清洗后作為潤(rùn)濕實(shí)驗(yàn)的基片 將ZT3熔滴棒材置于鈦合金基片的表面并放在潤(rùn)濕性測(cè)試裝置內(nèi),調(diào)整水平后以10 K/min的升溫速率加熱到不同溫度并保溫一定的時(shí)間 在這期間實(shí)時(shí)觀察液滴的形態(tài)

用Leo Supra 55掃描電子顯微鏡(帶有X射線能量分散譜(EDS))觀察雙層復(fù)合材料失效前后的微觀形貌 在Instron 5582萬能力學(xué)試驗(yàn)機(jī)上進(jìn)行三點(diǎn)彎曲實(shí)驗(yàn),應(yīng)變速率為0.1 mm/min,跨度為20 mm,試樣的尺寸為25 mm×4 mm×2 mm,ZT3非晶合金與TC21鈦合金在厚度方向上的比為1∶1 用分離式霍普金森壓桿測(cè)試圓棒樣品的動(dòng)態(tài)壓縮力學(xué)性能 樣品的直徑和長(zhǎng)度都為4 mm

2 結(jié)果和討論2.1 ZT3非晶合金在TC21鈦合金上的潤(rùn)濕行為

用外加法制備雙相復(fù)合材料,最關(guān)鍵的是兩相的界面結(jié)合[29~31] 用液相工藝制備復(fù)合材料,外加相與液相的結(jié)合涉及到溶解、擴(kuò)散和界面反應(yīng) 圖1a給出了ZT3合金熔體/TC21鈦合金的潤(rùn)濕角隨溫度的變化 可以看出,開始時(shí)接觸角很大,隨著溫度的升高潤(rùn)濕角逐漸減小 溫度進(jìn)一步升高使液滴在TC21鈦合金基片的鋪展明顯加快隨后又逐漸減緩,最終潤(rùn)濕角降低到10° 這表明,提高溫度可改善ZT3與TC21鈦合金基片的濕潤(rùn)性[30]

圖1



圖1潤(rùn)濕角與溫度和時(shí)間的關(guān)系

Fig.1Relationship between contact angle and temperature during continuous heating process (a) and increasing time (b)

圖1b給出了保溫溫度為963 K時(shí)ZT3合金熔體/TC21鈦合金潤(rùn)濕角隨時(shí)間的變化 可以看出,在溫度為963 K時(shí)初始潤(rùn)濕角約為41°,與連續(xù)升溫過程中溫度達(dá)963 K時(shí)的接觸角相同(圖1a),但是此時(shí)接觸角并沒有達(dá)到穩(wěn)態(tài) 保溫30 s后潤(rùn)濕角減小到22°,繼續(xù)保溫到60 s潤(rùn)濕角降至約12° 然后,隨著保溫時(shí)間的增加,潤(rùn)濕角低于10°并保持穩(wěn)定 隨著溫度的升高和時(shí)間的延長(zhǎng),ZT3合金熔體的粘度降低,潤(rùn)濕阻滯力隨之降低;同時(shí),在溫度升高和時(shí)間增加的過程中,ZT3合金熔體與鈦合金基片之間的溶解擴(kuò)散加劇,潤(rùn)濕驅(qū)動(dòng)力增大使熔體在基片上迅速鋪展開,潤(rùn)濕速率提高使?jié)櫇窠茄杆贉p小 隨著潤(rùn)濕過程的進(jìn)行,潤(rùn)濕驅(qū)動(dòng)力減小直至等于粘滯阻力,潤(rùn)濕進(jìn)入平衡過程后潤(rùn)濕角趨于恒定 這表明,ZT3非晶合金與TC21鈦合金基片具有良好的潤(rùn)濕性,制備ZT3/TC21雙層復(fù)合材料是可行的

2.2 雙層復(fù)合材料的微觀結(jié)構(gòu)

圖2a給出了在不同溫度制備雙層非晶復(fù)合材料的示意圖,圖2b~d給出了在1073、1123和1173 K制備的雙層復(fù)合材料的界面形貌掃描圖 可以看出,這種雙層復(fù)合材料與ZT3/Ti55的界面特征相似[30],界面處都沒有生成金屬間化合物,但是鈦合金向非晶一側(cè)溶解擴(kuò)散 這種界面屬于第二類界面,其濕潤(rùn)性非常好,與潤(rùn)濕實(shí)驗(yàn)的結(jié)果一致 從圖2可見,在ZT3非晶合金與TC21鈦合金的界面生成了界面層,是非晶合金熔體與TC21鈦合金發(fā)生劇烈固/液交互作用的結(jié)果 鈦合金向非晶一側(cè)溶解擴(kuò)散,在界面生成了界面層 這種界面層的厚度,受復(fù)合材料制備溫度的影響 制備溫度越高,則界面層越厚 從圖2還能觀察到,界面層明顯向非晶合金的熔體里生長(zhǎng),呈現(xiàn)出典型的樹枝狀 提高制備溫度,則樹枝狀界面層向非晶合金熔體內(nèi)生長(zhǎng)得更深、更粗 這些樹枝晶在保溫過程中部分從界面層剝落而溶解進(jìn)非晶合金熔體里,在快冷過程中從非晶合金熔體里以枝晶相的形式析出 制備溫度越高,非晶合金里的枝晶相就越粗、分布范圍越廣、體積分?jǐn)?shù)越高 其原因是,制備溫度的升高能促進(jìn)界面層的生成和以樹枝晶的形式向非晶合金熔體里生長(zhǎng),并加劇界面層的溶解

圖2



圖2在不同溫度制備的雙層復(fù)合材料的示意圖和界面處的微觀結(jié)構(gòu)掃描圖

Fig.2Schematic diagram of the whole dual-layer composites (a) and SEM images of the microstructures at the interfaces between metallic glasses and TC21 titanium alloys for the dual-layer composites prepared under different temperatures (b~d)

ZT3/TC21的復(fù)合主要是通過溶解擴(kuò)散連接的 影響溶解擴(kuò)散的因素很多 根據(jù)菲克第一定律[32]

J=-D?C?X

濃度梯度D固定時(shí)原子的擴(kuò)散主要與擴(kuò)散系數(shù)相關(guān),ZT3/TC21的結(jié)合屬于典型的原子擴(kuò)散 式中J為擴(kuò)散通量(單位時(shí)間內(nèi)沿?cái)U(kuò)散方向通過單位面積的擴(kuò)散物質(zhì)量);D為擴(kuò)散系數(shù);X為沿?cái)U(kuò)散方向的距離 ZT3/TC21的結(jié)合,其組元性質(zhì)、組元濃度等在初始時(shí)都相同 因此,溫度是影響界面層溶解擴(kuò)散的主要因素 根據(jù)Arrhenius公式D=D0exp(QKT),溫度越高則原子動(dòng)能越大,擴(kuò)散系數(shù)D越大,擴(kuò)散速率隨之提高 在ZT3/TC21復(fù)合過程中,隨著溫度的升高,界面處變得更活躍的原子使固態(tài)鈦合金向非晶熔體里溶解擴(kuò)散的速率提高 因此,隨著溫度的升高,鈦合金擴(kuò)散的量更多,擴(kuò)散遷移的距離更遠(yuǎn),最后在非晶基體中生成枝晶相 圖2給出了界面的形貌

在ZT3/TC21的固/液交互作用過程中,固態(tài)TC21鈦合金成分?jǐn)U散使TC21鈦合金溶解 同時(shí),因?yàn)閆T3非晶合金熔體中的Zr、Cu、Ni原子濃度比固態(tài)TC21鈦合金高、擴(kuò)散驅(qū)動(dòng)力較大,使其向固態(tài)的TC21鈦合金中擴(kuò)散 ZT3體系的非晶形成能力非常高[26],微量成分的擴(kuò)散不會(huì)明顯降低非晶合金的形成能力 ZT3非晶合金熔體里的Cu、Ni、Be元素在平衡的β枝晶相里的固溶度較低,在凝固過程中優(yōu)先固溶于非晶合金基體中,這有利于非晶合金的形成,又不會(huì)產(chǎn)生明顯的擴(kuò)散[7, 8] 而Zr元素的部分?jǐn)U散不會(huì)使非晶合金形成能力的急劇降低 根據(jù)菲克第一定律,Zr元素向TC21鈦合金內(nèi)擴(kuò)散的驅(qū)動(dòng)力呈梯度變化 這種梯度變化,反映在與TC21鈦合金連接的界面層的成分分布,如圖3所示 從圖3可見,樹枝狀、與非晶合金相連接的晶態(tài)相為枝晶相,其成分均勻,而與TC21鈦合金連接的界面層的成分呈現(xiàn)梯度變化 界面層的主要成分是Ti、Zr、Al Ti元素是界面層的主要成分,Zr元素是非晶合金熔體內(nèi)的成分向TC21鈦合金擴(kuò)散而累積的 Al元素主要源于TC21鈦合金,在固/液交互作用過程中也向非晶熔體內(nèi)擴(kuò)散,因其含量很低而沒有明顯的特征 制備溫度的升高使成分(主要Zr元素)擴(kuò)散的驅(qū)動(dòng)力變大,從而使界面層增厚 界面層變厚又促進(jìn)界面層以樹枝晶的形式向非晶熔體內(nèi)生長(zhǎng),從而加劇了界面層的溶解

圖3



圖3在1173 K制備的雙層復(fù)合材料界面處的微觀結(jié)構(gòu)線性掃描圖和對(duì)應(yīng)的成分分布

Fig.3Line scanning analysis result and the corresponding element profiles for the dual-layer composites prepared at 1173 K

為了進(jìn)一步明確成分的擴(kuò)散,對(duì)在1123 K制備的雙層復(fù)合材料界面處非晶一側(cè)的析出相進(jìn)行EDS檢測(cè),得到的成分列于表1 根據(jù)菲克第一定律,濃度差產(chǎn)生成分的相互擴(kuò)散 開始時(shí),Ti、Al、Cr、Nb、Mo和Sn元素的含量明顯高于非晶合金,界面兩側(cè)的濃度差導(dǎo)致成分?jǐn)U散 析出相含有Al、Cr、Nb、Mo和Sn元素,表明在制備復(fù)合材料的過程中這些元素跨越界面擴(kuò)散到非晶熔體一側(cè),凝固時(shí)富集在析出相內(nèi) 析出相的Ti含量明顯比非晶基體的高,其原因是鈦合金里的Ti元素?cái)U(kuò)散到非晶合金熔體一側(cè)并在凝固過程中以枝晶相的形式析出

Table 1

表1

表1在1123 K制備的雙層復(fù)合材料界面處的枝晶相與非晶基體的含量

Table 1Compositions of dendrites and metallic glass matrix in dual-layer composite prepared at the temperature of 1123 K (atomic fraction, %)

Compositions Al Ti Cr Ni Cu Zr Nb Mo Sn
Dendrites 4.72 69.61 1.27 1.99 3.60 16.98 0.25 1.03 0.54
Metallic glass matrix 3.69 58.07 1.13 5.37 7.95 23.56 0.44 0.42 0.31


2.3 雙層復(fù)合材料的彎曲力學(xué)性能

圖4a給出了ZT3非晶合金和在不同溫度制備的雙層復(fù)合材料的彎曲應(yīng)力-位移曲線 彎曲力學(xué)實(shí)驗(yàn)如圖4a中的插圖所示,ZT3非晶合金承受壓應(yīng)力,TC21鈦合金承受拉應(yīng)力 韌性的TC21鈦合金處于拉應(yīng)力一側(cè),能限制ZT3非晶合金的開裂,防止材料過早失效 雖然ZT3非晶合金的彎曲強(qiáng)度很高,但是發(fā)生了脆性斷裂 雙層復(fù)合材料的變形,屬于彈性變形和塑性變形 在1073和1123 K制備的雙層復(fù)合材料其彎曲應(yīng)力-位移曲線達(dá)到最大應(yīng)力值(分別為2045和2177 MPa)后,隨著位移的增加,彎曲應(yīng)力逐漸降低 其原因是,試樣在彎曲過程中出現(xiàn)部分裂紋而使橫截面積減小 但是,在1173 K制備的復(fù)合材料表現(xiàn)出明顯的加工硬化,抗彎強(qiáng)度達(dá)到2137 MPa時(shí)并沒有出現(xiàn)應(yīng)力達(dá)到最大值后逐漸下降的現(xiàn)象 三種溫度制備的雙層復(fù)合材料其三點(diǎn)彎曲應(yīng)力-位移曲線出現(xiàn)鋸齒現(xiàn)象(圖4b)是二次剪切帶形核和剪切帶擴(kuò)展所致 這表明,非晶合金里的單一主剪切帶多重化促進(jìn)了材料的彎曲塑性 三種溫度制備的雙層復(fù)合材料的塑性相近,但是1073 K制備的材料其抗彎強(qiáng)度略低,為2045 MPa

圖4



圖4ZT3非晶合金和在不同溫度制備的雙層復(fù)合材料的彎曲應(yīng)力-撓度曲線和在1173 K制備的復(fù)合材料的彎曲應(yīng)力-撓度曲線的局部放大圖

Fig.4Flexural stress-deflection curves of ZT3 BMG and the dual-layer composites under different temperature (a) and local enlarge flexural stress-deflection curve of the composites prepared at 1173 K (b)

圖5給出了彎曲試驗(yàn)后樣品的表面形貌 可以看出,在每個(gè)試樣的拉應(yīng)力一側(cè)產(chǎn)生滑移帶,在壓應(yīng)力一側(cè)產(chǎn)生剪切帶 進(jìn)行彎曲實(shí)驗(yàn)時(shí)處于拉應(yīng)力一側(cè)的應(yīng)力最大且最先達(dá)到材料的屈服點(diǎn),主導(dǎo)著材料的最終斷裂 但是TC21鈦合金具有良好的塑性變形能力,在受載過程中處于拉應(yīng)力一側(cè)的應(yīng)力得到了釋放,使材料不易發(fā)生斷裂 這是雙層復(fù)合材料具有良好彎曲塑性的主要原因 但是,處于壓應(yīng)力一側(cè)的非晶合金很脆,在受載過程中容易發(fā)生災(zāi)難性斷裂 這表明,控制雙層復(fù)合材料彎曲性能的區(qū)域是處于壓應(yīng)力一側(cè)的非晶合金

圖5



圖5在不同溫度制備的雙層復(fù)合材料樣品彎曲失效后的側(cè)面掃描圖

Fig.5SEM image of the dual-layer composites prepared at 1073 K (a~c), 1123 K (d~f) and 1173 K (g~i) after failure

在非晶合金的一側(cè),觀察到大量剪切帶和明顯的剪切臺(tái)階 主剪切帶沿著與自由平面呈約50°的方向擴(kuò)展,與文獻(xiàn)[33]報(bào)道的非晶合金在彎曲載荷作用下剪切帶的擴(kuò)展一致 二次剪切帶和三次剪切帶大量分叉,且其間距不均勻 靠近樣品自由平面的主剪切帶處,材料處于壓應(yīng)力高度束縛狀態(tài),二次剪切帶形成團(tuán)簇分支 剪切帶的分叉使彼此間相互交叉和纏結(jié),有利于改善雙層復(fù)合材料的韌性,避免非晶合金中的剪切帶很快演化成裂紋而使材料失效 樣品持續(xù)彎曲時(shí),間距較大的主剪切帶很快擴(kuò)展到靠近材料的中軸 從自由界面到中軸處應(yīng)力逐漸降低,剪切帶擴(kuò)展的尖端應(yīng)力也隨之降低[34] 這些剪切帶的擴(kuò)展減緩了其他剪切帶的應(yīng)力集中,具有良好的應(yīng)力屏蔽作用

雙層復(fù)合材料的界面是裂紋產(chǎn)生的形核點(diǎn) 界面處應(yīng)力的高度集中,使裂紋在界面處萌生[35, 36] 從圖5可見,所有雙層復(fù)合材料的最后彎曲斷裂都是裂紋從界面處產(chǎn)生并擴(kuò)展所致 圖1表明,ZT3非晶合金與TC21鈦合金具有良好的潤(rùn)濕性,其界面結(jié)合良好 大部分層狀復(fù)合材料在載荷作用過程中均出現(xiàn)界面分層,最終使材料失效[37, 38] 從圖5可見,裂紋雖然從界面處萌生,但是當(dāng)前制備的雙層復(fù)合材料在載荷持續(xù)增加過程中并沒有出現(xiàn)ZT3非晶合金與TC21鈦合金分層 這進(jìn)一步說明,ZT3非晶合金與TC21鈦合金界面結(jié)合牢固 這也是當(dāng)前制備的雙層復(fù)合材料具有較好彎曲性能的主要原因

TC21鈦合金具有良好的韌性,在載荷作用下不會(huì)先開裂生成裂紋 界面處的高應(yīng)力集中,只能使裂紋在非晶合金一側(cè)啟動(dòng) 裂紋先從界面處萌生,在非晶合金的一側(cè)擴(kuò)展 從圖5還可見,在裂紋擴(kuò)展過程中主裂紋周圍出現(xiàn)一些明顯的剪切帶 這些剪切帶,能有效緩解非晶合金的局部應(yīng)力集中 裂紋尖端的塑性變形,是材料增韌的主要機(jī)制之一[39],能使裂紋鈍化而避免非晶合金過早失效,有利于提高材料的抗損傷能力 但是從圖5可見,在三種溫度制備的復(fù)合材料其斷裂特征明顯不同 1073和1123 K制備的復(fù)合材料最后都斷裂,而1173 K制備的復(fù)合材料最后雖然失效但是并沒有斷裂 1123 K制備的復(fù)合材料斷裂裂紋明顯比1073 K制備的復(fù)合材料偏轉(zhuǎn)幅度大,有利于提高材料的抗斷裂能力 對(duì)比圖5a、d和g可見,制備溫度提高使裂紋的數(shù)量增加 在受載過程中多重裂紋的產(chǎn)生能釋放裂紋尖端的應(yīng)力集中,避免材料過早失效 對(duì)比圖5b、e和h可見,1073 K制備的復(fù)合材料萌生裂紋后,裂紋的尖端雖然明顯鈍化,但是其擴(kuò)展路徑對(duì)垂直于界面方向的偏離較小 制備溫度高于1123 K的材料,裂紋萌生后其擴(kuò)展方向嚴(yán)重偏離與界面垂直的方向,而且裂紋在擴(kuò)展過程中還與其他裂紋相匯 這種模式的裂紋擴(kuò)展,明顯提高了材料的抗損傷能力 同時(shí),制備溫度的提高使非晶合金中枝晶相的體積分?jǐn)?shù)和尺寸增大,能阻礙裂紋擴(kuò)展而使裂紋擴(kuò)展路徑變得曲折,如圖5所示 從圖4也可見,制備溫度的提高,使材料的加工硬化能力更明顯 這種能力的提高源于多重裂紋的產(chǎn)生以及裂紋的大幅度偏轉(zhuǎn)擴(kuò)展 多重裂紋的產(chǎn)生,其實(shí)與界面處的界面層厚度(包含界面處生長(zhǎng)的枝晶相)有關(guān) 從圖5i可見,較厚的界面層使裂紋直接在界面層內(nèi)產(chǎn)生,并沿著平行于界面層的方向擴(kuò)展 這意味著,這種復(fù)合材料中的界面層是裂紋的形核點(diǎn),而且其抗損傷能力較弱 因此,制備溫度的提高使界面處生成的界面層厚度增加,有利于裂紋的產(chǎn)生 從圖5c、f和i可見,1073和1123 K制備的非晶復(fù)合材料其界面層較薄,在一個(gè)應(yīng)力集中點(diǎn)處只產(chǎn)生單一的裂紋 但是,1173 K制備的非晶復(fù)合材料其界面層較厚,在一個(gè)應(yīng)力集中點(diǎn)處萌生兩個(gè)裂紋

從圖4可見,1073 K制備的雙層復(fù)合材料其強(qiáng)度低于在其他兩個(gè)溫度制備的復(fù)合材料 實(shí)際上,TC21鈦合金的韌性非常好,其性能對(duì)材料最終的性能有很大的影響 制備溫度不同,對(duì)TC21鈦合金的性能也有很大的影響 圖6給出了在1073、1123和1173 K處理過后的TC21鈦合金拉伸應(yīng)力-應(yīng)變曲線 可以看出,TC21鈦合金在三種制備溫度下均表現(xiàn)出良好的加工硬化能力,是雙層復(fù)合材料具有優(yōu)異加工硬化能力的主要原因 隨著制備溫度的提高,TC21鈦合金的加工硬化隨之增強(qiáng),也使雙層復(fù)合材料的加工硬化能力的提高,如圖4a所示 從圖中還可見,1073 K制備的TC21鈦合金的斷裂強(qiáng)度最低,為831 MPa 而1123和1173 K制備的TC21鈦合金的斷裂強(qiáng)度比較接近,與1073 K處理的鈦合金相比明顯提高,分別達(dá)到995和1017 MPa 1123和1173 K制備的TC21鈦合金其韌性并沒有降低而是改善了,不會(huì)降低制備出的雙層復(fù)合材料的韌性 TC21鈦合金處于拉應(yīng)力一側(cè),其斷裂強(qiáng)度對(duì)材料的最終失效起關(guān)鍵性作用 在1073 K制備的復(fù)合材料中TC21鈦合金的斷裂強(qiáng)度最低,從而使雙層復(fù)合材料的彎曲強(qiáng)度最低

圖6



圖6在不同溫度處理的TC21鈦合金的拉伸應(yīng)力-應(yīng)變曲線

Fig.6Tensile stress-strain curves of the TC21 titanium alloy after heating treatment under different temperature

2.4 雙層復(fù)合材料的動(dòng)態(tài)壓縮力學(xué)性能

在實(shí)際的工程應(yīng)用中,材料有時(shí)承受動(dòng)態(tài)載荷或高應(yīng)變速率載荷 Johnson等[40]和Jiang等[41]研究了Zr基非晶合金遭受準(zhǔn)靜態(tài)載荷和動(dòng)態(tài)載荷時(shí)截然不同的特征 Zr基非晶合金承受準(zhǔn)靜態(tài)壓縮載荷時(shí)表現(xiàn)出顯著的塑性變形,而承受動(dòng)態(tài)載荷作用時(shí)卻表現(xiàn)出典型的脆性斷裂 因此,有必要研究雙層復(fù)合材料的動(dòng)態(tài)壓縮力學(xué)性能 圖7給出了在1073、1123和1173 K制備的雙層復(fù)合材料的動(dòng)態(tài)壓縮應(yīng)力-應(yīng)變曲線和對(duì)應(yīng)的應(yīng)變速率隨時(shí)間的變化 動(dòng)態(tài)壓縮實(shí)驗(yàn)的應(yīng)變速率很高,如圖7b所示 應(yīng)變速率為1000 s-1時(shí),ZT3非晶合金的動(dòng)態(tài)壓縮強(qiáng)度約為700 MPa,且其動(dòng)態(tài)壓縮強(qiáng)度隨著應(yīng)變速率的增加而降低[42] 本文制備的雙層復(fù)合材料,其動(dòng)態(tài)壓縮強(qiáng)度為901~1326 MPa 對(duì)比結(jié)果表明,雙層復(fù)合材料的動(dòng)態(tài)壓縮強(qiáng)度明顯比ZT3非晶合金更優(yōu)異 其主要原因是:首先,TC21鈦合金對(duì)ZT3非晶合金的束縛作用避免ZT3非晶合金過早失效;其次,應(yīng)變速率為1500 s-1時(shí)TC21鈦合金的動(dòng)態(tài)壓縮強(qiáng)度和塑性應(yīng)變分別為1086~1287 MPa和4.4%~6.5%[43] TC21鈦合金良好的動(dòng)態(tài)壓縮性能既能提高ZT3非晶合金的動(dòng)態(tài)壓縮強(qiáng)度又能通過塑性變形釋放材料的部分應(yīng)變能,最終使材料的動(dòng)態(tài)壓縮力學(xué)性能提高

圖7



圖7在不同溫度制備的雙層復(fù)合材料的動(dòng)態(tài)壓縮應(yīng)力-應(yīng)變曲線和在動(dòng)態(tài)壓縮過程中試樣的應(yīng)變速率與時(shí)間的關(guān)系

Fig.7True dynamic compressive stress-strain curves for the dual-layer composites under different temperature (a) and the variation of strain rate with time under compressive loading for every sample (b)

動(dòng)態(tài)壓縮應(yīng)力-應(yīng)變曲線表明,應(yīng)力達(dá)到屈服強(qiáng)度后所有的雙層復(fù)合材料都進(jìn)入軟化階段,直至最后斷裂 文獻(xiàn)[34]揭示,非晶合金或者非晶復(fù)合材料的動(dòng)態(tài)壓縮力學(xué)性能并沒有表現(xiàn)出準(zhǔn)靜態(tài)載荷條件作用下的穩(wěn)定塑性流變行為,因?yàn)樵趧?dòng)態(tài)變形過程中沒有足夠的時(shí)間觸動(dòng)剪切帶多重化 另外,該雙層復(fù)合材料中的TC21鈦合金只限制非晶合金一側(cè)的變形而對(duì)非晶合金的變形束縛較少 在1073 K制備的非晶復(fù)合材料其動(dòng)態(tài)壓縮強(qiáng)度最大,為1264~1326 MPa 隨著制備溫度的提高,材料的動(dòng)態(tài)壓縮強(qiáng)度降低 在1173 K制備的雙層復(fù)合材料,其強(qiáng)度降低到901~916 MPa 產(chǎn)生這種動(dòng)態(tài)壓縮性能不同的主要原因是:在高應(yīng)變速率載荷作用下不會(huì)發(fā)生在靜態(tài)載荷條件下出現(xiàn)的裂紋穩(wěn)定擴(kuò)展 而隨著制備溫度的提高界面層的厚度增大,容易誘發(fā)裂紋的產(chǎn)生 極高的應(yīng)變速率產(chǎn)生的裂紋,使材料迅速失效

3 結(jié)論

(1) ZT3非晶合金與TC21鈦合金之間具有良好的潤(rùn)濕性 隨著制備溫度的提高,潤(rùn)濕角很快減小,制備溫度提高到1070 K,潤(rùn)濕角降低至10°;在963 K保溫過程中,潤(rùn)濕角隨著時(shí)間的延長(zhǎng)極快地減小,最后穩(wěn)定在10°以下

(2) 在不同溫度制備ZT3非晶合金/TC21鈦合金雙層復(fù)合材料,TC21鈦合金發(fā)生不同程度的溶解,在界面生成一層明顯的界面層,在非晶合金一側(cè)析出部分枝晶相 隨著制備溫度的提高,界面層變厚、枝晶相的析出增加、枝晶相分布的范圍更廣

(3) 不同溫度制備的ZT3非晶合金/TC21鈦合金雙層復(fù)合材料具有良好的室溫彎曲塑性,并保持其彎曲強(qiáng)度達(dá)到2177 MPa,其動(dòng)態(tài)壓縮強(qiáng)度為901~1326 MPa 隨著制備溫度的提高,材料的動(dòng)態(tài)壓縮強(qiáng)度降低

參考文獻(xiàn)

View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子

[1]

Lu Y, Su S, Zhang S, et al.

Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility

[J]. Acta Mater., 2021, 206: 116632

DOIURL [本文引用: 3]

[2]

Zhang C, Wang W, Xing W, et al.

Understanding on toughening mechanism of bioinspired bulk metallic glassy composites by thermal spray additive manufacturing

[J]. Scr. Mater., 2020, 177: 112

DOIURL

[3]

Lin S F, Liu D M, Zhu Z W, et al.

New Ti-based bulk metallic glasses with exceptional glass forming ability

[J]. J. Non-Cryst. Solids., 2018, 502: 71

DOIURL [本文引用: 1]

[4]

Xing D, Chen S S, Chen P D, et al.

Effect of Fe microalloying on plastic deformation behavior of Cu-Zr-Al metallic glasses

[J]. Chin. J. Mater. Res., 2021, 35(11): 850

DOI [本文引用: 1] " />

The mechanical properties of bulk metallic glasses (BMGs) and their composites have been under intense investigation for many years, owing to their unique combination of high strength and elastic limit. However, because of their highly localized deformation mechanism, BMGs are typically considered to be brittle materials and are not suitable for structural applications. Recently, highly-toughened BMG composites have been created in a Zr-Ti-based system with mechanical properties comparable with high-performance crystalline alloys. In this work, we present a series of low-density, Ti-based BMG composites with combinations of high strength, tensile ductility, and excellent fracture toughness.

[10]

Kolodziejska J A, Kozachkov H, Kranjc K, et al.

Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites

[J]. Sci. Rep., 2016, 6(1): 22563

DOI [本文引用: 1] " />

Deformation and fracture behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass and its composite containing transverse tungsten fibers in compression were investigated. The monolithic metallic glass and the tungsten fiber composite specimens with aspect ratios of 2 and 1 are shown to have essentially the same ultimate strength under compression. The damage processes in the bulk metallic glass composite consisted of fiber cracking, followed by initiation of shear band in the glassy matrix mainly from the impingement of the fiber crack on the fiber/matrix interface. The site of the shear band initiation in the matrix is consistent with the prediction of finite element modeling. Evidence is present that the tungsten fiber can resist the propagation of the shear band in the glassy matrix. However, the compressive strain to failure substantially decreased in the present composite compared with the composites containing longitudinal tungsten fibers. Finally, the two composite specimens fractured in a shear mode and almost all the tungsten fibers contained cracks.

[17]

Li Z K, Fu H M, Sha P F, et al.

Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

[J]. Sci. Rep., 2015, 5(1): 8967

DOI [本文引用: 1] " />

We present a systematic study of homogeneous deformation in a La-based bulk metallic glass and two in situ composites based on the same glass. In contrast to prior investigations, which focused on relatively dilute composites, in this work the reinforcement volume percentages were more concentrated at 37% and 52%—near or above the percolation threshold (35–40%). Hot uniaxial compressive testing was conducted over a wide strain rate range from 10?2to 10?5s?1at a temperature near the glass transition. For such concentrated composites, the homogeneous deformation behavior appeared to be dominated by the properties of the reinforcement phase; in the present case the La reinforcements deformed by glide-controlled creep. Post-deformation analysis suggested that bulk metallic glass matrix composites were susceptible to microstructural evolution, which appeared to be enhanced by deformation, in contrast with a stress-free anneal. Consequently, unreinforced bulk metallic glass appeared to be more structurally stable than its composites during deformation near the glass transition.

[20]

Qiao J W.

In-situ dendrite/metallic glass matrix composites: a review

[J]. J. Mater. Sci. Technol., 2013, 29(8): 685

DOI [本文引用: 2] " />

Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) alloy samples in both rod and plate geometry were prepared. Different free volume states were obtained through thermal treatment. The plastic deformation ability of the BMGs was investigated through both a three-point bending test and compression test. The three-point bending results reveal the important role of free volume content on the formation of multiple shear bands, as the shear band propagation can be efficiently stopped due to the existence of the stress gradient from the surface to the neutral plane. In compression, the sample size rather than free volume controls the shear banding behavior.

[35]

Guo W, Kato H, Yamada R, et al.

Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method

[J]. J. Alloys Compd., 2017, 707: 332

DOIURL [本文引用: 1]

[36]

Wu F F, Chan K C, Li S T, et al.

Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading

[J]. J. Mater. Sci., 2013, 49(5): 2164

DOIURL [本文引用: 1]

[37]

Liu B X, Huang L J, Kaveendran B, et al.

Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status

[J]. Composites B, 2017, 108: 377

DOIURL [本文引用: 1]

[38]

Liu B X, Huang L J, Rong X D, et al.

Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes

[J]. Compos. Sci. Technol., 2016, 126: 94

DOIURL [本文引用: 1]

[39]

Ritchie R O.

The conflicts between strength and toughness

[J]. Nat. Mater., 2011, 10(11): 817

DOIPMID [本文引用: 1] class="outline_tb" " />

Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6) alloy were prepared by copper-mold injection casting method and the effect of Fe microalloying on the glass-forming ability and mechanical properties of Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6) metallic glasses were investigated. The results show that the glass-forming ability of the alloy decreases with increasing of Fe content, while the plastic deformation ability at room temperature increases obviously. It is found that with the increase of minor Fe content more free volume will be introduced into the glassy matrix, and the inhomogeneity of composition and free volume distribution in the matrix will increase as a result of the positive mixing enthalpy of Fe and Cu. These factors jointly result in enhanced plasticity of metallic glass with high Fe content.

邢 棟, 陳雙雙, 宋佩頔 等.

Fe微合金化對(duì)Cu-Zr-Al非晶合金塑性變形行為的影響及其機(jī)理

[J]. 材料研究學(xué)報(bào), 2021, 35(11): 850

[5]

Li T T, Hu Y, Cui X M, et al.

Micro-hardness and Shear Bands of Zr-Al-Cu-Ni-Ag Bulk Metallic Glass Composites

[J]. Chin. J. Mater. Res., 2014, 28(10): 730

李亭亭, 胡 勇, 崔曉明 等.

Zr-Al-Cu-Ni-Ag非晶復(fù)合材料的顯微硬度和剪切帶形貌

[J]. 材料研究學(xué)報(bào), 2014, 28(10): 730

[6]

Lewandowski J J, Greer A L.

Temperature rise at shear bands in metallic glasses

[J]. Nat. Mater., 2005, 5(1): 15

[7]

Lin S F, Ge S F, Zhu Z W, et al.

Double toughening Ti-based bulk metallic glass composite with high toughness, strength and tensile ductility via phase engineering

[J]. Appl. Mater. Today., 2021, 22: 100944

[本文引用: 2]

[8]

Lin S F, Zhu Z W, Ge S F, et al.

Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy

[J]. J. Mater. Sci. Technol., 2020, 50: 128

[本文引用: 2]

[9]

Hofmann D C, Suh J Y, Wiest A, et al.

Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility

[J]. PNAS., 2008, 105(51): 20136

PMID " />

The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error.

[11]

Hofmann D C, Suh J Y, Wiest A, et al.

Designing metallic glass matrix composites with high toughness and tensile ductility

[J]. Nature, 2008, 451(7182): 1085

[12]

Szuecs F, Kim C P, Johnson W L.

Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite

[J]. Acta Mater., 2001, 49(9): 1507

[13]

Kozachkov H, Kolodziejska J, Johnson W L, et al.

Effect of cooling rate on the volume fraction of B2 phases in a CuZrAlCo metallic glass matrix composite

[J]. Intermetallic., 2013, 39: 89

[14]

Zhang H F, Li H, Wang A M, et al.

Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite

[J]. Intermetallic., 2009, 17(12): 1070

[15]

Zhang B, Fu H M, Zhang H F, et al.

Synthesis and property of short tungsten fibre/Zr-based metallic glass composite

[J]. J. Mater. Sci. Technol., 2019, 35: 1347

[16]

Zhang H, Liu L Z, Zhang Z F, et al.

Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading

[J]. J. Mater. Res., 2006, 21(6): 1375

" />

The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on the W substrate surface. Sessile drop experiment proves the prediction and corresponding in-situ coating appears at the interface. Besides, the atomic interaction mechanism was proven to be effective in many other systems by the sessile drop technique. Considering the interfacial morphology, Nb was added into the alloy to fabricate W/Zr-based BMGCs. As expected, the Nb addition effectively suppressed the W-Zr reaction and damage to W fibers. Both the compressive and tensile properties are improved obviously.

[18]

Tang H, Zhang Y, Li Y.

Synthesis of La-based in-situ bulk metallic glass matrix composite

[J]. Intermetallic, 2002, 10(11-12): 1203

[19]

Fu X L, Li Y, Schuh C A.

Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement

[J]. J. Mater. Res., 2011, 22(6): 1564

" />

<p>The advanced fabrication of in-situ dendrite/metallic glass matrix (MGM) composites is reviewed. Herein, the semi-solid processing and Bridgman solidification are two methods, which can make the dendrites homogeneously dispersed within the metallic glass matrix. Upon quasi-static compressive loading at room temperature, almost all the in-situ composites exhibit improved plasticity, due to the effective block to the fast propagation of shear bands. Upon quasi-static tensile loading at room temperature, although the composites possess tensile ductility, the inhomogeneous deformation and associated softening dominates. High volume-fractioned dendrites and network structures make in-situ composites distinguishingly plastic upon dynamic compression. In-situ composite exhibits high tensile strength and softening (necking) in the supercooled liquid region, since the presence of high volume-fractioned dendrites lowers the rheology of the viscous glass matrix at high temperatures. At cryogenic temperatures, a distinguishingly-increased maximum strength is available; however, a ductile-to-brittle transition seems to be present by lowering the temperature. Besides, improved tension&ndash;tension fatigue limit of 473&nbsp;MPa and four-point-bending fatigue limit of 567&nbsp;MPa are gained for Zr<sub>58.5</sub>Ti<sub>14.3</sub>Nb<sub>5.2</sub>Cu<sub>6.1</sub>Ni<sub>4.9</sub>Be<sub>11.0</sub> MGM composites. High volume-fraction dendrites within the glass matrix induce increased effectiveness on the blunting and propagating resistance of the fatigue-crack tip. The fracture toughness of in-situ composites is comparable to those of the toughest steels and crystalline Ti alloys. During steady-state crack-growth, the confinement of damage by in-situ dendrites results in enhancement of the toughness.</p>

[21]

Qiao J W, Wang S, Zhang Y, et al.

Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification

[J]. Appl. Phys. Lett., 2009, 94(15): 151905

[22]

Cheng J L, Chen G, Xu F, et al.

Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites

[J]. Intermetallic, 2010, 18(12): 2425

[23]

Zhang X L, Chen G, Du Y L.

Synthesis of plastic Mg-based bulk-metallic-glass matrix composites by bridgman solidification

[J]. Metall. Mater. Trans. A, 2012, 43(8): 2604

[24]

Qiao J W, Jia H L, Liaw P K,

Metallic glass matrix composites

[J]. Mater. Sci. Eng. R., 2016, 100: 1

[25]

Chen S, Li W Q, Zhang L, et al.

Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites

[J]. Composites B, 2020, 199: 108219

[26]

Tang M Q, Zhang H F, Zhu Z W, et al.

TiZr-base bulk metallic glass with over 50 mm in diameter

[J]. J. Mater. Sci. Technol., 2010, 26(6): 481

[本文引用: 2]

[27]

Wen X, Wan M P, Huang C W, et al.

Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy

[J]. Mater. Des., 2019, 180: 107898

[28]

Long W, Zhang S, Liang Y L, et al.

Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy

[J]. Int. J. Miner. Metall. Mater., 2020, 28(2): 296

[29]

Ding S, Kong J, Schroers J.

Wetting of bulk metallic glass forming liquids on metals and ceramics

[J]. J. Appl. Phys., 2011, 110(4): 043508

[30]

Ma G, Lv S, Lu Z, et al.

Wetting behavior and interfacial characteristic of Ti32.8Zr30.2Cu9Ni5.3Be22.7/Ti55 alloy system

[J]. Mater. Chem. Phys., 2021, 270: 124759

[本文引用: 2]

[31]

Ma G F, Li Z K, He C L, et al.

Wetting behaviors and interfacial characteristics of TiZr-based bulk metallic glass/W substrate

[J]. J. Alloys Compd., 2013, 549: 254

[32]

Ghoneim A, Ojo O A.

Numerical modeling and simulation of a diffusion-controlled liquid-solid phase change in polycrystalline solids

[J]. Comput. Mater. Sci., 2011, 50(3): 1102

[33]

Conner R D, Li Y, Nix W D, et al.

Shear band spacing under bending of Zr-based metallic glass plates

[J]. Acta Mater., 2004, 52(8): 2429

[34]

Zhang L, Jiang F, Zhao Y, et al.

Shear band multiplication aided by free volume under three-point bending

[J]. J. Mater. Res., 2011, 25(2): 283

[本文引用: 2] " />

The attainment of both strength and toughness is a vital requirement for most structural materials; unfortunately these properties are generally mutually exclusive. Although the quest continues for stronger and harder materials, these have little to no use as bulk structural materials without appropriate fracture resistance. It is the lower-strength, and hence higher-toughness, materials that find use for most safety-critical applications where premature or, worse still, catastrophic fracture is unacceptable. For these reasons, the development of strong and tough (damage-tolerant) materials has traditionally been an exercise in compromise between hardness versus ductility. Drawing examples from metallic glasses, natural and biological materials, and structural and biomimetic ceramics, we examine some of the newer strategies in dealing with this conflict. Specifically, we focus on the interplay between the mechanisms that individually contribute to strength and toughness, noting that these phenomena can originate from very different lengthscales in a material's structural architecture. We show how these new and natural materials can defeat the conflict of strength versus toughness and achieve unprecedented levels of damage tolerance within their respective material classes.

[40]

Lu J, Ravichandran G, Johnson W L.

Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures

[J]. Acta Mater., 2003, 51(12): 3429

[41]

Li M C, Jiang M Q, Yang S, et al.

Effect of strain rate on yielding strength of a Zr-based bulk metallic glass

[J]. Mater. Sci. Eng. A, 2017, 680: 21

[42]

Li W Q, Zhu Z W, Li G J, et al.

Correlation between dynamic compressive strength and fracture behaviors of bulk metallic glasses

[J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33(10): 1407

[43]

Zhang J X, Yi X B, Shen J C, et al.

Influence of solution and ambient temperature on dynamic compression mechanical properties and adiabatic shear sensitivity of TC21 titanium alloy

[J]. Materials Reports, 2020, 34(12): 24092

張俊喜, 易湘斌, 沈建成 等.

固溶和工作溫度對(duì)TC21鈦合金動(dòng)態(tài)壓縮性能和絕熱剪切敏感性的影響

[J]. 材料導(dǎo)報(bào), 2020, 34(12): 24092

Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility

3

2021

聲明:
“TiZr基非晶/TC21雙層復(fù)合材料的制備和力學(xué)性能” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)
分享 0
         
舉報(bào) 0
收藏 0
反對(duì) 0
點(diǎn)贊 0
全國熱門有色金屬技術(shù)推薦
展開更多 +

 

中冶有色技術(shù)平臺(tái)微信公眾號(hào)
了解更多信息請(qǐng)您掃碼關(guān)注官方微信
中冶有色技術(shù)平臺(tái)微信公眾號(hào)中冶有色技術(shù)平臺(tái)

最新更新技術(shù)

報(bào)名參會(huì)
更多+

報(bào)告下載

第二屆中國微細(xì)粒礦物選礦技術(shù)大會(huì)
推廣

熱門技術(shù)
更多+

衡水宏運(yùn)壓濾機(jī)有限公司
宣傳
環(huán)磨科技控股(集團(tuán))有限公司
宣傳

發(fā)布

在線客服

公眾號(hào)

電話

頂部
咨詢電話:
010-88793500-807
專利人/作者信息登記