Al-Zn-Mg-Cu(7000系)高強(qiáng)
鋁合金具有高比強(qiáng)度、比剛度和良好的耐腐蝕性能,在航空航天、船舶制造、軌道交通等領(lǐng)域得到了廣泛的應(yīng)用[1,2]
添加
稀土元素Sc對(duì)鋁合金有顯著的改性作用,使其具有高強(qiáng)度、高耐熱性和良好的抗蝕性[3,4]
在傳統(tǒng)7055、7075等高強(qiáng)鋁合金中加入微量Sc元素的Al-Zn-Mg-Cu-Sc鋁合金可使其具有更加優(yōu)異的綜合力學(xué)性能[5,6],但是用熔焊焊接高強(qiáng)7000系(包括含Sc)鋁合金時(shí)產(chǎn)生的氣孔和熱裂紋等缺陷使接頭的力學(xué)性能嚴(yán)重降低[7]
攪拌摩擦焊(Friction Stir Welding,F(xiàn)SW)是一種固相連接技術(shù),特別適于焊接Al-Zn-Mg-Cu-Sc鋁合金 [8]
雖然FSW的熱輸入明顯小于熔焊,但是其接頭仍出現(xiàn)軟化現(xiàn)象
先前的研究表明,提高時(shí)效強(qiáng)化鋁合金接頭力學(xué)性能的三種方式,分別是提高焊接速度[9,10]、采用冷卻介質(zhì)增加FSW過程的冷卻速率[11]和焊后熱處理[12~15]
焊后熱處理是最有效的方式
對(duì)5.4 mm厚2219-T6鋁合金FSW接頭的研究表明[12],焊后人工時(shí)效熱處理能顯著提高焊速接頭的力學(xué)性能
對(duì)6 mm厚2014-T6鋁合金FSW接頭的研究表明[12],焊后固溶+人工時(shí)效(T6)熱處理可將接頭硬度恢復(fù)到母材的水平,但是接頭焊核區(qū)(Nugget zone, NZ)的晶粒發(fā)生了異常長(zhǎng)大[13]
Robert等[14]對(duì)2519-0.36Sc鋁合金進(jìn)行FSW,發(fā)現(xiàn)焊后T6熱處理使接頭的整體硬度明顯提高,但是NZ區(qū)的晶粒異常長(zhǎng)大,且在NZ與熱機(jī)影響區(qū)(Thermal-mechanically affected zone, TMAZ)的界面出現(xiàn)了孔洞,使接頭的疲勞性能大幅降低
以上研究表明,焊后熱處理能提高時(shí)效強(qiáng)化鋁合金FSW接頭的硬度,但是T6熱處理使某些合金接頭NZ出現(xiàn)晶粒異常長(zhǎng)大和孔洞
在焊后T6熱處理過程中FSW接頭的晶粒是否異常長(zhǎng)大,與接頭的原始晶粒尺寸有密切的關(guān)系[15],而工藝參數(shù)是影響FSW接頭晶粒尺寸的關(guān)鍵因素
Sc能抑制晶粒長(zhǎng)大
基于此,本文對(duì)11 mm厚7055-0.1Sc-T4鋁合金進(jìn)行FSW,研究焊后人工時(shí)效和T6熱處理對(duì)接頭的組織和性能的影響
1 實(shí)驗(yàn)方法
實(shí)驗(yàn)用母材(Base material, BM)為11 mm厚的7055-0.1Sc-T4軋制板材,其化學(xué)成分和力學(xué)性能分別列于表1和表2
Table 1
表1
表17055-0.1Sc-T4軋制板材的化學(xué)成分
Table 1Chemical composition of 7055-0.1Sc-T4 plate (mass fraction, %)
Zn
|
Mg
|
Cu
|
Sc
|
Zr
|
Si
|
Fe
|
Mn
|
Al
|
7.6~8.4
|
1.8~2.3
|
2.0~2.6
|
0.1
|
0.08~0.25
|
≤0.1
|
≤0.15
|
≤0.05
|
Bal.
|
Table 2
表2
表27055-0.1Sc-T4軋制板材的拉伸性能
Table 2Tensile properties of 7055-0.1Sc-T4
Yield Strength / MPa
|
Tensile Strength / MPa
|
Elongation /
%
|
595±28
|
635±36
|
9±5
|
進(jìn)行FSW前,用砂紙將試板表面打磨以除去表面的氧化膜,再用酒精清除表面的油污
用FSW-SDLM 50型焊機(jī)對(duì)100 mm×300 mm板材進(jìn)行對(duì)焊,攪拌頭的主軸傾角為2.75°,轉(zhuǎn)速為500 r/min,焊速分別為100 mm/min和250 mm/min,焊后的接頭在空氣中自然冷卻至室溫
將接頭在室溫下放置20 d后,切取試樣分別進(jìn)行焊后人工時(shí)效(120℃×24 h)和T6(470℃×1.5 h+水淬+120℃×24 h)熱處理
分別將焊態(tài)(As welded, AW)接頭、焊后人工時(shí)效態(tài)(Artificial aging, AA)接頭和固溶+人工時(shí)效態(tài)(T6)接頭簡(jiǎn)稱AW接頭、AA接頭和T6接頭
例如,500-100-AW表示轉(zhuǎn)速為500 r/min,焊速為100 mm/min的焊接態(tài)接頭
在垂直于焊接方向切取金相樣品,將其磨拋后用Keller試劑(2 mL HF+3 mL HCl+5 mL HNO3+190 mL H2O)腐蝕,然后分別用體視顯微鏡和Leica DMI光學(xué)顯微鏡觀察其宏觀和微觀組織
沿焊接樣品板厚的中線,使用Leco LM-247AT型硬度儀測(cè)試樣品的顯微硬度,載荷為300 g,保壓時(shí)間15 s,各點(diǎn)間距為1.5 mm
將TEM試樣預(yù)減薄至約60 μm,然后將其沖成直徑為3 mm的圓片,再將其在30% HNO3+70% CH3OH溶液中雙噴減薄,用液氮冷卻后使用JEOL JEM-2100F型透射電鏡(TEM)觀察和分析接頭各區(qū)域的第二相特征,加速電壓為200 kV
在垂直于焊接方向切取室溫拉伸樣品,其尺寸在圖1中給出
用INSTRON 5982型拉伸機(jī)測(cè)試?yán)煨阅?,?yīng)變速率為1×10-3 s-1,測(cè)試3個(gè)標(biāo)準(zhǔn)試樣,取其結(jié)果的平均值
用Quanta 450型掃描電鏡(SEM) 觀察拉伸后斷口的形貌
圖1拉伸試樣的尺寸
Fig.1Configuration and sizes of tensile specimen
2 結(jié)果和討論2.1 接頭的形貌
圖2給出了各種FSW 7055-0.1Sc-T4接頭橫截面的宏觀形貌
可以看出,焊接態(tài)接頭均沒有出現(xiàn)任何焊接缺陷(圖2a和b),可分為NZ、TMAZ和熱影響區(qū)(Heat affected zone, HAZ)三個(gè)區(qū)域
焊后T6熱處理沒有改變低焊速接頭500-100-T6的宏觀形貌(圖2c),但是高焊速接頭500-250-T6底部的顏色發(fā)生明顯的改變(圖2d)且出現(xiàn)了晶粒異常長(zhǎng)大
接頭500-100-T6中心和接頭500-250-T6底部(圖2c和d中黑色箭頭所示)的拋光態(tài)局部放大圖顯示,在兩個(gè)區(qū)域均出現(xiàn)了微小孔洞(圖3a和b),其位置均位于接頭“S”線上
與AW接頭相比,人工時(shí)效熱處理的FSW接頭宏觀和微觀形貌沒有變化
圖2FSW 7055-0.1Sc-T4焊接態(tài)和T6態(tài)接頭橫截面的宏觀形貌
Fig.2Cross-sectional macrostructure of FSW 7055-0.1Sc-T4 joints (a) 500-100-AW, (b) 500-250-AW, (c) 500-100-T6, (d) 500-250-T6
圖3圖2c, d中黑色箭頭所示位置的放大圖
Fig.3Magnified of zones marked by the black arrows in Fig.2c, d
溫度較低(120℃)的人工時(shí)效熱處理后,F(xiàn)SW接頭的宏觀和微觀形貌與焊接態(tài)接頭的組織基本相同,而FSW鋁合金接頭在焊后T6熱處理過程中晶粒異常長(zhǎng)大[13~15]
鋁合金的晶粒穩(wěn)定性與晶粒尺寸和第二相分布有關(guān)[15~17]
在FSW過程中較高的熱輸入和劇烈塑性變形使NZ發(fā)生動(dòng)態(tài)再結(jié)晶,NZ晶粒為等軸細(xì)小的再結(jié)晶晶粒,此時(shí)晶界處于高自由能狀態(tài),焊后晶界仍保持較高的能量狀態(tài),NZ底部晶粒越細(xì)其晶界能越高[18]
本文的研究中,低焊速接頭500-100-AW的晶粒較大
NZ中Al3(Zr, Sc)等難溶顆粒對(duì)晶粒長(zhǎng)大的抑制,使焊后T6熱處理沒有改變低焊速接頭500-100-T6的晶粒形貌
但是,高焊速500-250-AW接頭的晶粒更加細(xì)小,高角晶界能給二次再結(jié)晶極大的驅(qū)動(dòng)力,細(xì)小晶粒與周圍晶粒合并以降低晶界能,達(dá)到更穩(wěn)定的組織狀態(tài)[19];Al3(Zr, Sc)等相對(duì)晶界的釘扎已不能抑制其晶粒長(zhǎng)大,因此在接頭500-250-T6 NZ底部晶界能最高的位置發(fā)生晶粒異常長(zhǎng)大(圖2d和圖4e)
圖4FSW 7055-0.1Sc-T4焊接態(tài)和T6態(tài)接頭不同位置的微觀組織
Fig.4OM of different regions in the FSW joints (a) BM, (b)~(e) magnified NZ of position B~E in Fig.2
圖5給出了FSW 7055-0.1Sc-T4接頭中的“S”線分布
“S”線源自于板材原始面,由高密度的Al2O3顆粒組成[20]
從圖5可以看出,轉(zhuǎn)速為500 r/min、焊接速度為100 mm/min時(shí)“S”線從NZ的底部開始偏向后退側(cè),最后呈弧狀向上曲折延伸到接頭上部(圖5a)
焊速由100 mm/min提高到250 mm/min,NZ材料的流動(dòng)弱化[21],使后退側(cè)更多的金屬材料參與NZ成型,使接頭“S”線的彎曲程度提高且集中在NZ中心區(qū)域(圖5b)
與AW態(tài)相比,T6熱處理的接頭其“S”線形狀不變,但更加直觀、易于觀察(圖5c和d),“S”線上分布著許多黑點(diǎn)
本研究中的黑點(diǎn)形貌分布與Ren等[22]對(duì)FSW 7075-T651鋁合金接頭的報(bào)道類似
該報(bào)道稱,T6熱處理后接頭沿“S”線開裂,周圍有許多小孔洞
Hu等[23]觀察了T6熱處理后FSW接頭“S”線周圍出現(xiàn)的小孔洞,認(rèn)為FSW接頭的殘余應(yīng)力和氧化物與基體之間線膨脹系數(shù)的差異產(chǎn)生的熱應(yīng)力,是T6熱處理后“S”線周圍產(chǎn)生小孔洞的原因
這可用于解釋本文實(shí)驗(yàn)中T6熱處理后接頭出現(xiàn)孔洞缺陷(圖3a和b)
圖5FSW 7055-0.1Sc-T4焊接態(tài)和T6態(tài)接頭的“S”線分布
Fig.5Pattern of “S” line in FSW 7055-0.1Sc-T4 joints (a) 500-100-AW, (b) 500-250-AW, (c) 500-100-T6, (d) 500-250-T6
2.2 硬度分布
圖6給出了各個(gè)狀態(tài)FSW 7055-0.1Sc-T4接頭橫截面中心線的硬度分布
可以看出,對(duì)于各焊接參數(shù),AW態(tài)和AA態(tài)接頭的硬度呈“W”型分布,最低硬度區(qū)(Low hardness zone,LHZ)位于HAZ,隨著焊速由100 mm/min提高到250 mm/min,LHZ的硬度隨之提高,位置內(nèi)移(圖6a和b)
焊后人工時(shí)效熱處理明顯提高了500~100和500~250兩種接頭NZ和BM的硬度,但是沒有改變LHZ的硬度
而焊后T6處理使兩個(gè)接頭各區(qū)硬度的提高相同(約195 Hv),明顯高于BM(T4態(tài))的硬度
圖6FSW 7055-0.1Sc-T4接頭橫截面中心線的顯微硬度分布
Fig.6Microhardness profile of FSW 7055-0.1Sc-T4 joints
沉淀強(qiáng)化鋁合金FSW接頭的硬度分布,主要受各區(qū)域沉淀強(qiáng)化相演變的影響
7000系(Al-Zn-Mg-Cu)鋁合金是可熱處理強(qiáng)化鋁合金,在T6熱處理過程中這種合金的析出相序列為SSSS→GP Zone(I or II)→η'(MgZn2)→η(MgZn2)[9]
在7055鋁合金中添加微量Sc元素,生成的Al3(Zr, Sc)與基體保持良好的共格關(guān)系[4],彌散分布在基體中有穩(wěn)定晶界和彌散強(qiáng)化的作用
Al-Zn-Mg-Cu-Sc鋁合金在較低的溫度(25~100℃)時(shí)效GP區(qū)和Al3(Zr, Sc)是主要強(qiáng)化相[9],而在高于120℃[9]的溫度時(shí)效則η'相、η相和Al3(Zr, Sc)相是主要強(qiáng)化相
圖7給出了FSW 7055-0.1Sc-T4接頭BM、NZ、LHZ的典型TEM明場(chǎng)像
BM沉淀相為球狀A(yù)l3(Zr, Sc)和GP區(qū)[24],對(duì)基體有彌散強(qiáng)化作用(圖7a和b)
在FSW過程中NZ經(jīng)歷了峰值溫度>475℃的熱循環(huán)[25],使GP區(qū)溶解,板條狀的η相基于Al3(Zr, Sc)顆粒相形核并析出(圖7c),在后續(xù)自然時(shí)效過程中NZ中的GP區(qū)重新析出[24],使NZ的硬度略比BM低但是遠(yuǎn)高于LHZ
圖7FSW 7055-0.1Sc-T4焊接態(tài)和T6接頭沉淀相的分布
Fig.7TEM micrographs (a) BF and (b) associated diffraction patterns of BM; (c) NZ and (d) LHZ of 500-100-AW; (e) NZ and (f) LHZ of 500-100-T6
在FSW過程中HAZ經(jīng)歷峰值溫度為360~370℃的熱循環(huán)[26],使GP區(qū)溶解并析出粗化的η'相和η相(圖7d),粗化沉淀相破壞了與基體之間的共格關(guān)系[27],使硬度降低,因此HAZ的硬度最低
470℃×1.5 h固溶處理使500~100接頭各區(qū)的沉淀相重新溶進(jìn)Al基體中,提高了基體中溶質(zhì)原子的濃度、相變驅(qū)動(dòng)力和形核率,在隨后的人工時(shí)效過程中接頭各區(qū)的沉淀相均勻析出細(xì)小且高密度的η'和η相(圖7e和f),因此T6處理后接頭的硬度分布呈“一”字分布,硬度整體提高
2.3 拉伸性能和斷裂特征
表3列出了各FSW 7055-0.1Sc-T4接頭的拉伸性能
可以看出,F(xiàn)SW各接頭的抗拉強(qiáng)度明顯低于BM;焊后人工時(shí)效熱處理使500~100和500~250接頭的抗拉強(qiáng)度分別小幅度提高了15.9 MPa和9.1 MPa,塑性小幅度降低;而焊后T6處理使500-100-T6和500-250-T6接頭的抗拉強(qiáng)度分別大幅度提高了156.6 MPa和86.5 MPa,其最高強(qiáng)度系數(shù)可達(dá)87.6%,但是接頭幾乎沒有塑性而直接脆斷
Table 3
表3
表3FSW 7055-0.1Sc-T4的接頭熱處理前后的拉伸性能
Table 3Transverse tensile properties of FSW 7055-0.1Sc-T4 joints under AW, AA and T6 states
Number
|
Sample
|
Tensile Strength / MPa
|
Elongation / %
|
Strength coefficient / %
|
1
|
500-100-AW
|
399.9±1.4
|
8.9±0.5
|
63.0%
|
2
|
500-250-AW
|
468.5±7.8
|
6.3±0.5
|
73.8%
|
3
|
500-100-AA
|
415.8±2.1
|
4.3±0.4
|
65.5%
|
4
|
500-250-AA
|
477.6±3.5
|
3.8±0.4
|
75.2%
|
5
|
500-100-T6
|
556.5±1.5
|
Brittle fracture
|
87.6%
|
6
|
500-250-T6
|
555.0±2.0
|
Brittle fracture
|
87.4%
|
圖8給出了各FSW 7055-0.1Sc-T4接頭拉伸斷裂的位置,黑色箭頭所指為接頭斷裂時(shí)產(chǎn)生的裂紋
AW態(tài)和AA態(tài)FSW接頭的斷裂位置均位于LHZ,斷裂路徑呈“之”字形,中部路徑與接頭的拉伸方向呈45°夾角,上部和下部路徑與中部垂直(圖8a)
而T6態(tài)FSW接頭的斷裂位置均位于NZ(圖8b和c)
進(jìn)一步觀察可以發(fā)現(xiàn),500-100-T6接頭斷裂路徑的中下部與“S”線基本重合(圖8b),500-250-T6接頭的斷裂路徑只在根部與少量“S”線重合(圖8c)
圖8FSW 7055-0.1Sc-T4焊接態(tài)和T6接頭的斷裂位置
Fig.8Fracture locations of FSW 7055-0.1Sc-T4 joints (a) 500-100-AW, (b) 500-100-T6, (c) 500-250-T6
焊后T6熱處理后,接頭都在NZ斷裂
低焊速的T6態(tài)接頭“S”線上的微孔洞(圖3a)在拉伸過程中成為裂紋源且沿著與基體結(jié)合強(qiáng)度較弱的“S”線擴(kuò)展[23],因此500-100-T6接頭的斷裂路徑與“S”線部分重合
高焊速的500-250-T6接頭根部的斷裂路徑(圖8c中紅框位置)與圖3b中的根部“S”線對(duì)應(yīng),表明該位置為接頭拉伸時(shí)先斷裂的部位
與低焊速接頭相比,高焊速接頭的“S”線分布更加彎曲,使500-250-T6接頭的斷裂路徑只有少部分與“S” 線重合[22]
圖9給出了FSW 7055-0.1Sc-T4 接頭的典型斷口形貌
從圖9可見,500-100-AW接頭斷口的宏觀形貌較為平坦(圖9a),而500-100-T6接頭的宏觀斷口上、下明顯不同
圖9b中左側(cè)黑色箭頭一側(cè)為接頭下部,呈臺(tái)階狀,而上部凹凸不平
500-100-AW斷口中心位置C放大后的微觀形貌表明,其斷裂形式主要是穿晶斷裂,可觀察到明顯的韌窩組織,韌窩底部有沉淀相顆粒,是典型的鋁合金斷口形貌(圖9c)
在500-100-T6接頭的拉伸過程中,其NZ中部“S”線上的孔洞成為裂紋源,裂紋沿“S”線向接頭上下擴(kuò)展
因此,位置D和E放大后的微觀形貌為解理斷裂,沒有明顯的韌窩組織特征,為典型的脆性斷裂特征(圖9d和e)
需要強(qiáng)調(diào)的是,接頭500-250-AW、500-100-AA和500-250-AA與接頭500-100-AW斷口的形貌類似,接頭500-250-T6與接頭500-100-T6的斷口形貌類似
圖9FSW 7055-0.1Sc-T4焊接態(tài)和T6接頭斷口的形貌
Fig.9Fracture morphologies of FSW 7055-0.1Sc-T4 joints, macrographic of (a) 500-100-AW, (b) 500-250-T6; magnified micrographs of positions C-E: (c) position C, (d) position D, (e) position E
3 結(jié)論
(1) 在轉(zhuǎn)速為500 r/min、焊接速度為100~250 mm/min條件下,7055-0.1Sc-T4的FSW接頭沒有焊接缺陷,其最低硬度區(qū)位于熱影響區(qū)
(2) 焊后人工時(shí)效熱處理使焊核區(qū)和母材區(qū)域的硬度提高,但是低硬度區(qū)的硬度沒有明顯變化,接頭的抗拉強(qiáng)度小幅提高而塑性降低
(3) T6熱處理后低焊速接頭焊核區(qū)的晶粒沒有異常長(zhǎng)大,但是高焊速接頭焊核區(qū)底部的晶粒異常長(zhǎng)大;T6熱處理將FSW 7055-0.1Sc-T4接頭各區(qū)的硬度提高到均一水平,使其強(qiáng)度大幅提高、強(qiáng)度系數(shù)提高到87.6%,但是其塑性極低
(4) 焊接態(tài)“S”線不影響FSW 7055-0.1Sc-T4接頭的拉伸性能,但是T6熱處理使接頭出現(xiàn)沿“S”線分布的孔洞,拉伸時(shí)接頭沿“S”線脆斷
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Schuster P A, ?sterreicher J A, Kirov G, et al.
Characterization and comparison of process chains for producing automotive structural parts from 7xxx aluminum sheets
[J]. Metals, 2019, 9(3): 305
DOIURL [本文引用: 1]
Due to their high specific strength, EN AW-7xxx aluminium alloys are promising materials for reducing the weight of automotive structural parts. However, their formability at room temperature is poor due to pronounced natural ageing. Therefore, we investigated hot stamping and W-temper forming for EN AW-7075 and a modified variant of EN AW-7021. For hot stamping of the modified EN AW-7021, a low-temperature stabilisation heat treatment (pre-aging at 80 °C for 1 h) was incorporated into the process chain design to inhibit natural ageing after forming. The process chains were compared with respect to dimensional accuracy, mechanical properties, microstructure, precipitation status (assessed by differential scanning calorimetry) and crashworthiness. It was found that hot stamping is suitable to form failure-free parts with good dimensional accuracy for both alloys while W-temper forming suffers from springback. Within a time-span of 21 days after forming, hardness values of hot stamped and stabilised parts did not increase significantly. Compared to non-stabilised parts, stabilised parts also showed significantly improved folding behaviour in quasi-static compression testing and absorbed approximately 15% more energy.
[2]
Peng X Y, Guo Q, Liang X P, et al.
Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy
[J]. Mater. Sci. Eng. A, 2017, 688: 146
DOIURL [本文引用: 1]
[3]
Yu L B, Wang W Y, Wang J, et al.
The effects of Sc addition on the microstructure and mechanical properties of Be-Al alloy fabricated by induction melting
[J]. J. Mater. Eng. Perform., 2019, 28(4): 2378
DOI [本文引用: 1]
[4]
Zhang J Y, Gao Y H, Yang C, et al.
Microalloying Al alloys with Sc: a review
[J]. Rare Met., 2020, 39(6): 636
DOI [本文引用: 2]
[5]
Teng G B, Liu C Y, Li J, et al.
Effect of Sc on microstructure and mechanical property of 7055 Al-alloy
[J]. Chin. J. Mater. Res., 2018, 32(2): 112
DOI [本文引用: 1]
The effect of Sc addition on the microstructure and mechanical properties of 7055 Al-alloy as-cast, as well as after homogenization-, rolling-, solution- and aging-treatment was investigated. The addition of 0.25%(mass fraction) Sc could lead to the formation of Al3(Sc, Zr) phase, which can promote the heterogeneous nucleation during casting. Therefore, the microstructure of the as cast 7055 Al-alloy was refined. The precipitation of nano-sized Al3(Sc, Zr) phase occurred during the homogenization treatment of the 7055-Sc Al-alloy, and this nano-sized Al3( Sc, Zr) phase could effectively inhibit the coarsening of Al grains during homogenization treatment, and play a role in pinning the grain boundaries, therewith inhibiting the recovery and recrystallization, thus retaining the fiber-like structure during subsequent rolling and solution treatments. Compared to the plain 7055 Al-alloy, the 7055-Sc Al alloy exhibited much higher fine grain strengthening effect due to finer grain size and showed higher tensile strength and hardness as high as 642 MPa and 218 HV, respectively.
滕廣標(biāo), 劉崇宇, 李 劍 等.
添加Sc對(duì)7055鋁合金微觀結(jié)構(gòu)和力學(xué)性能的影響
[J]. 材料研究學(xué)報(bào), 2018, 32(2): 112
DOI [本文引用: 1]
研究了添加Sc元素對(duì)7055鋁合金鑄造、均勻化處理、軋制和固溶時(shí)效過程的微觀結(jié)構(gòu)演化以及力學(xué)性能的影響
結(jié)果表明,向7055溶液中添加質(zhì)量分?jǐn)?shù)為0.25%的Sc導(dǎo)致在鑄造過程中形成初生Al<sub>3</sub>(Sc,Zr)相
這個(gè)相能促使合金發(fā)生非均質(zhì)形核,顯著細(xì)化合金的鑄造組織
在7055-Sc鋁合金的均勻化處理過程中析出高密度納米Al<sub>3</sub>(Sc, Zr)相,不但能抑制晶粒粗化,而且在后期軋制變形和固溶時(shí)效處理過程中還起釘扎晶界、抑制回復(fù)與再結(jié)晶、保留纖維組織的作用
與7055鋁合金相比,7055-Sc鋁合金的晶粒尺寸更小,因此具有更有效的細(xì)晶強(qiáng)化效應(yīng)
添加Sc的時(shí)效處理態(tài)7055鋁合金的最大抗拉強(qiáng)度和顯微硬度,分別提高到642 MPa和218 HV
[6]
Mo Y F, Liu C Y, Teng G B, et al.
Fabrication of 7075-0.25Sc-0.15Zr alloy with excellent damping and mechanical properties by FSP and T6 treatment
[J]. J. Mater. Eng. Perform., 2018, 27(8):4162
DOI [本文引用: 1]
[7]
Verma R P, Kumar Lila M.
A short review on aluminum alloys and welding in structural applications
[J]. Mate. Today: Proc., 2021, 46: 10687
[本文引用: 1]
[8]
Mishra R S, Ma Z Y.
Friction stir welding and processing
[J]. Mater. Sci. Eng. R, 2005, 50(1-2): 1
DOIURL [本文引用: 1]
[9]
Gupta S, Haridas R S, Agrawal P, et al.
Influence of welding parameters on mechanical, microstructure, and corrosion behavior of friction stir welded Al 7017 alloy
[J]. Mater. Sci. Eng. A, 2022, 846: 143303
DOIURL [本文引用: 4]
[10]
Zhang H, Qin H L, Wu H Q.
Effect of process parameters on mechanical properties of friction stir welded 2195 Al-Li alloy joints
[J]. Trans. China Weld. Inst., 2016, 37(4): 19
[本文引用: 1]
張 華, 秦海龍, 吳會(huì)強(qiáng).
工藝參數(shù)對(duì)2195鋁鋰合金攪拌摩擦焊接頭力學(xué)性能的影響
[J]. 焊接學(xué)報(bào), 2016, 37(4): 19
[本文引用: 1]
[11]
Liu J, Chen H G, Wei J X, et al.
Micro-softening behavior and its control of 7N01-T5 Al alloy friction stir welded joint
[J]. Light Alloy Fabrication Technol., 2021, 49(11): 58
[本文引用: 1]
劉 建, 陳輝剛, 韋景勛 等.
7N01-T5鋁合金攪拌摩擦焊接頭微區(qū)軟化行為及控制
[J]. 輕合金加工技術(shù), 2021, 49(11): 58
[本文引用: 1]
[12]
Zhang Z, Xiao B L, Ma Z Y.
Enhancing mechanical properties of friction stir welded 2219Al-T6 joints at high welding speed through water cooling and post-welding artificial ageing
[J]. Mater. Charact., 2015, (106): 255
[本文引用: 3]
[13]
Zhang Z, Xiao B L, Ma Z Y.
Influence of post weld heat treatment on microstructure and mechanical properties of friction stir-welded 2014Al-T6 alloy
AMR, 2012, (409): 299
[本文引用: 2]
[14]
Kosturek R, ?nie?ek L, Wachowski M, et al.
The influence of post-weld heat treatment on the microstructure and fatigue properties of Sc-modified AA2519 friction stir-welded joint
[J]. Materials, 2019, 12(4): 583
DOIURL [本文引用: 1]
The aim of this research was to investigate the influence of post-weld heat treatment (PWHT, precipitation hardening) on the microstructure and fatigue properties of an AA2519 joint obtained in a friction stir-welding process. The welding process was performed with three sets of parameters. One part of the obtained joints was investigated in the as-welded state and the second part of joints was subjected to the post-weld heat treatment (precipitation hardening) and then investigated. In order to establish the influence of the heat treatment on the microstructure of obtained joints both light and scanning electron microscopy observations were performed. Additionally, microhardness analysis for each sample was carried out. Fatigue properties of the samples in the as-welded state and the samples after post-weld heat treatment were established in a low-cycle fatigue test with constant true strain amplitude equal to ε = 0.25% and cycle asymmetry coefficient R = 0.1. Hysteresis loops together with changes of stress and plastic strain versus number of cycles are presented in this paper. The fatigue fracture in tested samples was analyzed with the use of scanning electron microscope. Our results show that post-weld heat treatment of AA2519 friction stir-welded joints significantly decreases their fatigue life.
[15]
Hassan K A A, Norman A F, Price D A, et al.
Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment
[J]. Acta Mater., 2003, 51(7): 1923
DOIURL [本文引用: 4]
[16]
Zhang J H, Hu Z L.
Microstructural thermal stability of aluminum alloy friction stir welding joint
[J]. Chin. J. Mech., 2022, 58(5): 73
張嘉恒, 胡志力.
鋁合金攪拌摩擦焊接頭組織熱穩(wěn)定性
[J]. 機(jī)械工程學(xué)報(bào), 2022, 58(5): 73
[17]
Zuiko I S, Mironov S, Betsofen S, et al.
Suppression of abnormal grain growth in friction-stir welded Al-Cu-Mg alloy by lowering of welding temperature
[J]. Scr. Mater., 2021, 196: 113765
DOIURL [本文引用: 1]
[18]
Hu Z L, Dai M L, Pang Q.
Influence of welding combined plastic forming on microstructure stability and mechanical properties of friction stir-welded Al-Cu alloy
[J]. J. Mater. Eng. Perform., 2018, 27(8): 4036
DOI [本文引用: 1]
[19]
Li N J.
Characterizations on microstructures and properties of 7075 aluminum alloy after friction stir processing and subsequent heat treatment
[D].
Chongqing:
Chongqing University, 2017
[本文引用: 1]
李念軍.
7075鋁合金攪拌摩擦加工及熱處理后的組織性能表征研究
[D].
重慶:
重慶大學(xué), 2017
[本文引用: 1]
[20]
Zhang Z, Xiao B L, Ma Z Y.
Effect of segregation of secondary phase particles and "S" line on tensile fracture behavior of friction stir-welded 2024Al-T351 joints
[J]. Metall. Mater. Trans. A, 2013, 44(9): 4081
DOIURL [本文引用: 1]
[21]
Zeng X H, Xue P, Wang D, et al.
Effect of processing parameters on plastic flow and defect formation in friction-stir-welded aluminum alloy
[J]. Metall. Mater. Trans. A, 2018, 49(7): 2673
DOI [本文引用: 1]
[22]
Ren S R, Ma Z Y, Chen L Q.
Effect of initial butt surface on tensile properties and fracture behavior of friction stir welded Al-Zn-Mg-Cu alloy
[J]. Mater. Sci. Eng. A, 2008, 479(1): 293
DOIURL [本文引用: 2]
[23]
Hu Z L, Pang Q, Dai M L.
Microstructure and mechanical properties of friction stir welding joint during post weld heat treatment with different zigzag lines
[J]. Rare Met., 2018, 38(11): 1070
DOI [本文引用: 2]
[24]
Lin H Q, Wu Y L, Liu S D.
Impact of initial temper of base metal on microstructure and mechanical properties of friction stir welded AA 7055 alloy
[J]. Mater. Charact., 2018, 146: 159
DOIURL [本文引用: 2]
[25]
Kang J, Feng Z C, Frankel G S, et al.
Friction stir welding of Al alloy 2219-T8: part I-evolution of precipitates and formation of abnormal Al2Cu agglomerates
[J]. Metall. Mater. Trans. A, 2016, 47(9): 4553
DOIURL [本文引用: 1]
[26]
Liu F C, Ma Z Y.
Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy
[J]. Metall. Mater. Trans. A, 2008, 39(10): 2378
DOIURL [本文引用: 1]
[27]
Chen Z W, Yan K, Ren C C, et al.
Precipitation sequence and hardening effect in 7A85 aluminum alloy
[J]. J. Alloys Compd., 2021, 875: 159950
DOIURL [本文引用: 1]
Characterization and comparison of process chains for producing automotive structural parts from 7xxx aluminum sheets
1
2019
聲明:
“焊后熱處理對(duì)7055-0.1Sc鋁合金攪拌摩擦焊接頭的組織與力學(xué)性能的影響” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)