鎂合金是目前實際應(yīng)用中最輕的金屬結(jié)構(gòu)材料,在航空航天、國防軍事、電子、軌道交通、汽車等領(lǐng)域有廣闊的應(yīng)用前景[1~4]
但是,傳統(tǒng)鎂合金的絕對強度偏低和室溫塑性較差,使其應(yīng)用范圍受到了限制
2001年,Kawamura等[5]首次用快速凝固/
粉末冶金技術(shù)制備出一種新型高強Mg97Y2Zn1(原子分?jǐn)?shù),以下無特殊說明合金成分均指原子分?jǐn)?shù))合金
熱擠壓后這種合金表現(xiàn)出優(yōu)異的力學(xué)性能,其室溫屈服強度超過600 MPa,伸長率也達(dá)到5%
后續(xù)研究發(fā)現(xiàn)[6],Mg97Y2Zn1合金晶粒內(nèi)部析出的長周期堆垛有序(Long-period stacking ordered, LPSO)相對其優(yōu)異的力學(xué)性能有重要貢獻(xiàn)
含LPSO相鎂合金因具有優(yōu)異的室/高溫力學(xué)性能[7~14],近年來受到學(xué)術(shù)界和工業(yè)界的極大關(guān)注
迄今為止陸續(xù)有學(xué)者研究發(fā)現(xiàn),多種Mg-RE-TM系合金(RE=Gd、Y、Dy、Er、Nd、Tm等,TM=Zn、Ni、Cu、Al等)中存在LPSO相[8~15]
Wang等[16]研究發(fā)現(xiàn),用少量的Ni取代Zn能明顯提高M(jìn)g-Gd-Zn合金中LPSO相的含量
其原因是,與Zn相比,Ni在鎂基體中的固溶度更低,這有利于LPSO相的析出
Yang等[17]研究了Ni含量對Mg-Y-Ni合金顯微組織和拉伸性能的影響
結(jié)果表明,Ni含量為0.5%(原子分?jǐn)?shù))的Mg98.5Y1Ni0.5合金中第二相主要為LPSO相,其室溫拉伸性能最佳
研究發(fā)現(xiàn),與Mg96Er3Zn1和Mg96Er3Cu1合金相比,鑄態(tài)Mg96Er3Ni1合金的室溫拉伸性能更優(yōu)異[18]
目前,對含LPSO相鎂合金的研究主要集中在Mg-RE-Zn[5~8,12,16]、Mg-RE-Ni[11,14,17]和Mg-RE-Cu[4,10,18]等單
稀土鎂合金,而對添加雙稀土的Mg-RE1-RE2-TM合金的研究還比較少[19~21]
Wu等[22]研究發(fā)現(xiàn),添加Y、Nd雙稀土對鎂合金的強化效果明顯好于單獨添加Y或Nd,使合金的室溫和高溫強度顯著提高
Rokhlin等[23]的研究也表明,在鎂合金中混合加入兩種稀土元素使其強度大幅度提高
Y和Er是在鎂合金中常用的兩種稀土合金化元素,在鎂基體中的固溶度較高,共晶溫度分別為12.5和33.8
同時,隨著溫度下降Y和Er的固溶度顯著降低,其固溶和時效強化效果顯著
研究還發(fā)現(xiàn),Y和Er對鎂合金的鑄態(tài)組織均具有一定的細(xì)化作用[24]
鑒于此,本文用重力鑄造方法制備3種雙稀土鎂合金Mg97Y2-x Er x Ni1(x=0.5、1、1.5)并對其進(jìn)行固溶處理,研究其組織和拉伸性能
1 實驗方法
實驗用Mg97Y2-x Er x Ni1(x=0.5、1、1.5)合金用功率為5KW的SG2-5-12型井式電阻爐熔煉,原料為純鎂錠(99.96%,質(zhì)量分?jǐn)?shù))、純Ni片(99.97%)、Mg-30Er和Mg-30Y中間合金
重力鑄造的澆注溫度為720℃
在熔煉和澆注過程中用混合氣體(99%CO2+1%SF6,體積分?jǐn)?shù))進(jìn)行保護(hù)
用電感耦合高頻等離子體發(fā)射光譜儀(ICP-AES)測定鑄態(tài)合金的化學(xué)成分,結(jié)果列于表1
在520℃對鑄態(tài)合金試樣固溶處理,保溫12 h后水淬
Table 1
表1
表1實驗合金的成分
Table 1Chemical composition of the alloys (atomic fraction, %)
Alloys
|
Mg
|
Y
|
Er
|
Ni
|
Mg97Y1.5Er0.5Ni1
Mg97Y1Er1Ni1
Mg97Y0.5Er1.5Ni1
|
Bal.
Bal.
Bal.
|
5.04
3.42
1.78
|
3.11
6.43
9.47
|
2.29
2.11
2.31
|
用D8 ADVANCE型X射線衍射儀(XRD)測定合金的相組成
用SU1510型掃描電鏡(SEM)和配套的能譜儀(EDS)觀察合金的微觀組織和分析相的成分
使用Image J軟件統(tǒng)計合金的平均晶粒尺寸、第二相平均寬度和體積分?jǐn)?shù)
用Talos F200X場發(fā)射透射電子顯微鏡(TEM)分析合金的第二相結(jié)構(gòu),使用離子減薄儀制備TEM試樣
在WDW-E100D型微機控制電子萬能試驗機上進(jìn)行室溫拉伸試驗,拉伸速率為1 mm/min,每組至少使用4個平行試樣,取其結(jié)果的平均值
用SEM觀察拉伸試樣斷口的形貌
2 結(jié)果和討論2.1 鑄態(tài)合金的組織和拉伸性能
圖1分別給出了鑄態(tài)Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金的XRD譜
可以看出,除了α-Mg相衍射峰,3種合金中LPSO相的衍射峰與PDF 36-1273卡片吻合較好,其對應(yīng)的LPSO相具有密排六方結(jié)構(gòu)(a=0.321 nm,c=4.698 nm),最早由LUO等[7]表征得到
結(jié)果表明,3種鑄態(tài)合金均由α-Mg基體和LPSO相組成
圖1
圖1鑄態(tài)Mg97Y2-x Er x Ni1合金的XRD譜
Fig.1XRD spectra of as-cast Mg97Y2-x Er x Ni1 alloys
圖2分別給出了鑄態(tài)Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金的背散射電子(BSE)照片
可以看出,3種合金的微觀組織均主要由α-Mg基體(深灰色襯度)和沿晶界析出的塊狀第二相(淺灰色襯度)組成
分別對3種合金中的第二相進(jìn)行EDS能譜分析,結(jié)果列于表2
從表2可見,Mg97Y1.5Er0.5Ni1合金中第二相(A點)中的Ni與Y+Er的原子比為0.92,接近1∶1,符合Mg-RE-TM合金LPSO相中TM與RE元素的比值范圍[8,11,14,18]
結(jié)合XRD結(jié)果可知,該塊狀第二相為LPSO相
Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金中的塊狀第二相(B點、C點)也均為LPSO相
圖2
圖2鑄態(tài)Mg97Y2-x Er x Ni1合金微觀組織的BSE照片
Fig.2BSE images of as-cast Mg97Y2-x Er x Ni1 alloys (a) x=0.5, (b) x=1 and (c) x=1.5
Table 2
表2
表2圖2中各微區(qū)的EDS分析結(jié)果
Table 2EDS analysis of points marked in Fig.2 (atomic fraction,%)
Position
|
Mg
|
Y
|
Er
|
Ni
|
A
B
C
|
90.69
90.64
90.68
|
3.62
2.36
0.94
|
1.22
2.94
3.72
|
4.47
4.56
4.66
|
圖3a給出了鑄態(tài)Mg97Y1Er1Ni1合金中LPSO相的高分辨(HRTEM)像
可以看出,LPSO相呈寬度不一的白色和黑色層片狀結(jié)構(gòu)且沿[0002]Mg方向周期性堆垛,是典型的LPSO結(jié)構(gòu)原子層排列特征[15,18]
圖3b給出了該LPSO相在[112ˉ0]Mg晶帶軸下的選區(qū)電子衍射(SAED)花樣
可以看出,LPSO相的衍射斑點與純鎂相的類似,但是在n/6 (0002)Mg衍射處可觀察到弱衍射斑
晶體衍射結(jié)構(gòu)的消光條件表明,LPSO相的(0018)衍射斑點和純鎂的(0002)衍射斑點重合,由此可確定該LPSO相結(jié)構(gòu)為18R型[6,13,15]
根據(jù)LPSO相的形成條件,可將Mg-RE-TM系合金分為兩大類[9]:一類是在液態(tài)合金凝固過程中生成的LPSO相,通常為18R型,后續(xù)固溶處理后轉(zhuǎn)變?yōu)?4H型,記為Type I LPSO相;另一類是在后續(xù)固溶處理過程中析出的LPSO相,通常為14H型,記為Type II LPSO相
顯然,本文制備的Mg-Y-Er-Ni合金中的LPSO相屬于Type I LPSO相
圖3
圖3鑄態(tài)Mg97Y1Er1Ni1合金中LPSO相的HRTEM形貌和選區(qū)電子衍射花樣
Fig.3HRTEM image (a) and SAED pattern on zone axes B=[112ˉ0] (b) of LPSO phase in as-cast Mg97Y1Er1Ni1 alloy
對3種鑄態(tài)合金的平均晶粒尺寸、第二相平均寬度和體積分?jǐn)?shù)的統(tǒng)計分析結(jié)果,如圖4所示
由圖4a可見,Mg97Y1Er1Ni1合金的晶粒最為細(xì)小(尺寸僅為19.3 μm),而Mg97Y0.5Er1.5Ni1合金的晶粒最為粗大(尺寸為39.1 μm)
由圖4b可見,Mg97Y1Er1Ni1合金中沿晶界析出的LPSO相其平均寬度最小(僅為5.8 μm),即LPSO相的尺寸最小,且其分布也最為均勻
由圖4c可見,Mg97Y1Er1Ni1中LPSO相的體積分?jǐn)?shù)最高(為39.5%),而Mg97Y0.5Er1.5Ni1合金中LPSO相的體積分?jǐn)?shù)最低(為28.9%)
這表明,適當(dāng)?shù)腨、Er配比,如本實驗中的1∶1,能顯著細(xì)化合金的微觀組織和促進(jìn)LPSO相的析出
圖4
圖4鑄態(tài)合金的平均晶粒尺寸、LPSO相平均寬度和LPSO相體積分?jǐn)?shù)
Fig.4Average grain size (a), average width of LPSO phase (b) and volume fraction of LPSO phase (c) in as-cast alloys
圖5給出了鑄態(tài)Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金的室溫拉伸性能
可以看出,Mg97Y1Er1Ni1合金的室溫拉伸性能最佳,其屈服強度、極限拉伸強度和伸長率分別為124 MPa、223 MPa和8.0%;Mg97Y0.5Er1.5Ni1合金的室溫拉伸性能最差,其屈服強度、極限拉伸強度和伸長率分別為113 MPa、187 MPa和6.1%
圖5
圖5鑄態(tài)合金的室溫拉伸性能
Fig.5Tensile properties of as-cast alloys tested at room temperature
在3種鑄態(tài)合金中,Mg97Y1Er1Ni1合金具有最佳的室溫拉伸強度和塑性,其原因是:首先,Mg97Y1Er1Ni1合金的晶粒最細(xì)小
晶界能阻礙位錯運動,晶粒越細(xì)小晶界越多,阻礙作用越大,即產(chǎn)生晶界強化
可用Hall-Petch公式
σGBS=kd-1/2
(1)
計算由晶界強化產(chǎn)生的合金屈服強度的提高
式(1)中k為常數(shù)(對于鎂合金其值約為160 MPa·μm-1/2 [25]),d為合金的平均晶粒尺寸
將鑄態(tài)Mg97Y1.5Er0.5Ni1,Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金的晶粒尺寸分別代入 式(1),可計算出3種合金的σGBS分別為27.6 MPa,36.4 MPa和25.6 MPa
細(xì)晶粒合金不僅強度高,而且塑性好
合金材料的晶粒越細(xì)小,在相同的變形量下變形能更趨均勻分散在更多的晶粒內(nèi),可降低晶內(nèi)和晶間的應(yīng)力集中和引起開裂的傾向,因此在斷裂之前能承受更大的塑性變形;其次,Mg97Y1Er1Ni1合金中LPSO相的體積分?jǐn)?shù)最高
LPSO相具有比α-Mg基體更高的硬度、強度和彈性模量[7,12,18],因此作為強化相可增強鎂合金
由塊狀LPSO相產(chǎn)生的合金屈服強度的提高可表示為[25]
Δσp=4φγμfε
(2)
φ=μ*/(μ*-γ(μ*-μ))
(3)
式中γ為與泊松比相關(guān)的調(diào)整系數(shù),其數(shù)值為0.35;ε為塑性應(yīng)變,數(shù)值為0.39%;μ和μ?分別為Mg基體和18R-LPSO相的剪切模量,數(shù)值分別為21.5 GPa和16.6 GPa;f為塊狀18R-LPSO相的體積分?jǐn)?shù)
將鑄態(tài)Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金中LPSO相的體積分?jǐn)?shù)分別代入 式(2),可計算出3種合金屈服強度的增量分別為36.7 MPa、42.1 MPa、30.8 MPa
同時,Mg97Y1Er1Ni1合金中LPSO相的尺寸最小且均勻分布
α-Mg基體的強度低于LPSO相,因此在拉伸變形過程中α-Mg基體先發(fā)生變形,其內(nèi)部形成的大量位錯不斷向沿晶界析出的LPSO相處堆積,從而在LPSO/α-Mg界面產(chǎn)生應(yīng)力集中
如果合金中LPSO相的尺寸差異較大,則各晶界承受的最大應(yīng)力不同
隨著應(yīng)力的不斷增大裂紋在最薄弱處萌生并擴(kuò)展,使合金發(fā)生斷裂
Mg97Y1Er1Ni1合金中沿晶界析出的LPSO相其尺寸差異最小,使各晶界能承受的最小應(yīng)力提高,有利于提高合金的拉伸強度
同時,LPSO相也具有一定的變形能力,在拉伸過程中尺寸較小的LPSO相能隨著α-Mg基體的變形而變形,而尺寸較大的LPSO相則需要更大的應(yīng)力才能變形
而過大的應(yīng)力又可能使LPSO/α-Mg界面處萌生裂紋并擴(kuò)展,加速合金的斷裂
因此,Mg97Y1Er1Ni1合金中細(xì)小均勻的LPSO相,也有利于提高合金的塑性
圖6分別給出了鑄態(tài)Mg97Y0.5Er1.5Ni1和Mg97Y1-Er1Ni1合金的室溫拉伸斷口的形貌
由圖6a可見,Mg97Y0.5Er1.5Ni1合金的拉伸斷口主要由解理面和撕裂棱組成,表現(xiàn)為解理斷裂和準(zhǔn)解理斷裂混合特征
由圖6b可見,與Mg97Y0.5Er1.5Ni1合金相比,Mg97Y1Er1Ni1合金的拉伸斷口中解理面的面積顯著減小,而撕裂棱的數(shù)量明顯增多,表現(xiàn)為準(zhǔn)解理斷裂特征
合金拉伸斷口的斷裂特征與拉伸實驗的數(shù)據(jù)一致,即Mg97Y1Er1Ni1合金的塑性優(yōu)于Mg97Y0.5Er1.5Ni1合金
圖6
圖6鑄態(tài)合金室溫拉伸斷口的形貌
Fig.6Fracture surface of as-cast Mg97Y0.5Er1.5Ni1 (a) and Mg97Y1Er1Ni1 alloys (b)
2.2 固溶態(tài)合金的組織和拉伸性能
圖7分別給出了固溶態(tài)Mg97Y1.5Er0.5Ni1、Mg97Y1-Er1Ni1和Mg97Y0.5Er1.5Ni1合金的XRD譜
可以看出,3種固溶態(tài)合金均由α-Mg基體和LPSO相組成
這表明,固溶處理沒有改變3種合金的相組成
圖7
圖7固溶態(tài)Mg97Y2-x Er x Ni1合金的XRD譜
Fig.7XRD spectra of solution-treated Mg97Y2-x Er x Ni1 alloys
圖8分別給出了固溶態(tài)Mg97Y1.5Er0.5Ni1、Mg97Y1-Er1Ni1和Mg97Y0.5Er1.5Ni1合金的BSE照片
可以看出,3種固溶態(tài)合金的微觀組織仍然主要由α-Mg基體(深灰色襯度)和沿晶界分布的塊狀第二相(淺灰色襯度)組成
對3種合金中第二相的EDS能譜分結(jié)果析,列于表3
從表3可見,3種固溶態(tài)合金第二相中Ni與Y+Er的原子比均接近1∶1,結(jié)合XRD分析結(jié)果可以確定其均為LPSO相
由圖8a可見,在固溶態(tài)Mg97Y1.5Er0.5Ni1合金晶內(nèi)可觀察到非常細(xì)小的層片狀相(B點),對其EDS能譜分析結(jié)果列于表3
根據(jù)EDS結(jié)果,這種細(xì)小層片狀相的化學(xué)式為Mg98.14(Y,Er)1.86,與α-Mg基體的成分接近
圖8
圖8固溶態(tài)Mg97Y2-x Er x Ni1合金微觀組織的BSE照片
Fig.8BSE images of solution-treated Mg97Y2-x Er x Ni1 alloys (a) x=0.5, (b) x=1 and (c) x=1.5
Table 3
表3
表3圖8中各微區(qū)的EDS分析結(jié)果
Table 3EDS analysis of points marked in Fig.8 (atomic fraction, %)
Position
|
Mg
|
Y
|
Er
|
Ni
|
A
B
C
D
|
89.48
98.14
89.91
90.39
|
3.86
0.71
2.48
1.32
|
1.48
1.15
2.79
3.51
|
5.18
-
4.62
4.78
|
圖9a給出了固溶態(tài)Mg97Y1.5Er0.5Ni1合金中LPSO相的HRTEM像
圖9b給出了該LPSO相在[112ˉ0]Mg晶帶軸下的SAED花樣,其表現(xiàn)為典型的18R-LPSO相特征:5個額外的暗斑均勻分布在(0000)Mg和(0002)Mg兩個亮斑之間,將此段距離分成6等份,表明固溶態(tài)Mg97Y1.5Er0.5Ni1合金中的LPSO相結(jié)構(gòu)仍為18R型
圖9
圖9固溶態(tài)Mg97Y1.5Er0.5Ni1合金中LPSO相的HRTEM形貌和選區(qū)電子衍射花樣
Fig.9HRTEM image (a) and SAED pattern on zone axes B=[112ˉ0] (b) of LPSO phase in solution-treated Mg97Y1.5Er0.5Ni1 alloy
圖10a給出了固溶態(tài)Mg97Y1.5Er0.5Ni1合金晶內(nèi)細(xì)小層片狀相的TEM明場像
可以看出,該層片狀相表現(xiàn)為平行于(0002)Mg晶面且寬度不一的細(xì)絲狀結(jié)構(gòu)
圖10c給出了細(xì)絲狀結(jié)構(gòu)與α-Mg基體疊加的SAED花樣,入射電子束平行于[112ˉ0]Mg晶帶軸
可以看出,在(0000)Mg和(0002)Mg衍射斑點間出現(xiàn)沿[0002]Mg方向的衍射芒線(如圖10b中箭頭標(biāo)示),其為細(xì)絲狀結(jié)構(gòu)的衍射信息
圖10b給出了該細(xì)絲狀結(jié)構(gòu)HRTEM像,結(jié)合SAED花樣可以確定,固溶態(tài)Mg97Y1.5Er0.5Ni1合金晶內(nèi)細(xì)小層片狀相為納米尺度的基面層錯,在[0002]Mg晶向上并不具備完整的堆垛周期性特征,與LPSO相的長周期堆垛有序結(jié)構(gòu)有本質(zhì)的不同
基面層錯比LPSO相的寬度更小、分布也更為彌散
Wen等[19]研究發(fā)現(xiàn),隨著固溶時間的延長Mg-Er-Gd-Zn-Zr合金基體中的層狀14H-LPSO結(jié)構(gòu)形成過程為:低周期性的基面層錯→14H-LPSO
可以認(rèn)為,在本文固溶態(tài)Mg97Y1.5Er0.5Ni1合金晶內(nèi)觀察到的細(xì)小層片狀相(細(xì)絲狀結(jié)構(gòu))是14H-LPSO的早期形態(tài)
圖10
圖10固溶態(tài)Mg97Y1.5Er0.5Ni1合金中基面層錯的TEM明場像、HRTEM相和選區(qū)電子衍射花樣
Fig.10TEM BF image (a), HRTEM image (b) and SAED pattern on zone axes B=[112ˉ0] (c) of stacking faults in solution-treated Mg97Y1.5Er0.5Ni alloy
對固溶態(tài)3種合金的平均晶粒尺寸、第二相平均寬度和體積分?jǐn)?shù)統(tǒng)計分析結(jié)果,如圖11所示
對比圖4和圖11可見,與鑄態(tài)相比,3種固溶態(tài)合金的晶粒和LPSO相均發(fā)生粗化
但是Mg97Y1Er1Ni1合金的晶粒和LPSO相的尺寸仍然最小,其平均晶粒尺寸和LPSO相平均寬度分別為34.7 μm和7.6 μm
3種固溶態(tài)合金中LPSO相的體積分?jǐn)?shù)比鑄態(tài)均有所降低,但是Mg97Y1Er1Ni1合金中LPSO相的體積分?jǐn)?shù)仍然最高(為38.1%)
圖11
圖11固溶態(tài)合金的平均晶粒尺寸、LPSO相平均寬度和LPSO相的體積分?jǐn)?shù)
Fig.11Average grain size (a), average width of LPSO phase (b) and volume fraction of LPSO phase (c) in solution-treated alloys
圖12分別給出了固溶態(tài)Mg97Y1.5Er0.5Ni1、Mg97Y1-Er1Ni1和Mg97Y0.5Er1.5Ni1合金的室溫拉伸性能
可以看出,固溶態(tài)Mg97Y1Er1Ni1合金的拉伸性能最佳,其屈服強度、極限拉伸強度和伸長率分別為128 MPa、229 MPa和8.1%;固溶態(tài)Mg97Y0.5Er1.5Ni1合金的拉伸性能最差,其屈服強度、極限拉伸強度和伸長率分別為114 MPa、192 MPa和6.3%
同時,固溶處理后3種合金的屈服強度、極限拉伸強度和伸長率與鑄態(tài)(圖5)相比均有所提高
其原因是,在高溫固溶處理過程中Y、Er溶質(zhì)原子較高的擴(kuò)散遷移能力使部分LPSO相溶解,Y、Er溶質(zhì)原子溶入α-Mg基體中形成過飽和固溶體,使晶格發(fā)生畸變
晶格畸變阻礙位錯運動,使基體強化
同時,Y、Er溶質(zhì)原子在α-Mg基體內(nèi)的擴(kuò)散使其在晶內(nèi)的分布更加均勻,從而消除或減弱了枝晶偏析,也有利于提高合金的拉伸性能
需要指出的是,與鑄態(tài)相比固溶態(tài)Mg97Y1.5Er0.5Ni1合金的拉伸強度顯著提高,可能與其晶內(nèi)出現(xiàn)的大量納米尺度的基面層錯有關(guān)
基面層錯的長徑比較大,具有較好的纖維強化效果[9]
圖12
圖12固溶態(tài)合金的室溫拉伸性能
Fig.12Tensile properties of solution-treated alloys tested at room temperature
表4分別列出了本文制備的Mg97Y1Er1Ni1合金、2種四元Mg-RE1-RE2-Zn以及2種三元Mg-RE-Ni合金的室溫拉伸性能
可以看出,與其他列出的合金相比,無論鑄態(tài)還是固溶態(tài)(T4)的Mg97Y1Er1Ni1合金其綜合室溫拉伸性能都比較高
Table 4
表4
表4本文制備的Mg97Y1Er1Ni1合金和其他相關(guān)合金的室溫拉伸性能
Table 4Tensile properties of present alloy and some other alloys reported in literatures
Alloys
|
RE/%,
atomic fraction
|
UTS / MPa
|
YS / MPa
|
Elongationg / %
|
State
|
Mg97Y1Er1Ni1
Mg97Y1Er1Ni1
Mg96.23Zn0.88Dy2.21Er0.68[26]
Mg96.23Zn0.88Dy2.21Er0.68[26]
Mg97.5Zn0.9Y0.8Gd0.8[13]
Mg97.5Zn0.9Y0.8Gd0.8[13]
Mg98.5Y1Ni0.5[17]
Mg97Gd2Ni1[16]
|
2
2
2.89
2.89
1.6
1.6
1
2
|
223
229
150.51
123.29
228.8
210.2
208
203
|
124
128
84.36
95.79
149
104.6
93
-
|
8.0
8.1
6.74
7.03
3.2
7.8
8.0
8.8
|
As-cast
T4
As-cast
T4
As-cast
T4
As-cast
As-cast
|
3 結(jié)論
(1) 鑄態(tài)Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5-Er1.5Ni1合金均由α-Mg基體和18R-LPSO相組成
Mg97Y1Er1Ni1合金的晶粒最細(xì)小,LPSO相的體積分?jǐn)?shù)最高、尺寸最小且分布最為均勻,具有最優(yōu)的室溫拉伸性能
(2) 在520℃固溶12 h后,Mg97Y1.5Er0.5Ni1、Mg97Y1-Er1Ni1和Mg97Y0.5Er1.5Ni1合金仍然由α-Mg基體和18R-LPSO相組成
在固溶態(tài)Mg97Y1.5Er0.5Ni1合金晶內(nèi)出現(xiàn)基面層錯,沒有完整的堆垛周期性特征
與鑄態(tài)相比,3種固溶態(tài)合金的室溫拉伸性能均有所提高
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Sun H, Chen M, Cheng M, et al.
Recrystallization and texture of magnesium alloy sheet during warm rolling based on multi-scale model
[J]. Chin. J. Mater. Res., 2021, 35(5): 339
[本文引用: 1]
孫 賀, 陳 明, 程 明 等.
基于多尺度模型的鎂合金薄板溫軋再結(jié)晶和織構(gòu)
[J]. 材料研究學(xué)報, 2021, 35(5): 339
[本文引用: 1]
[2]
Wang D J, Zhang M Q, Ji Z S, et al.
Process and properties of graphene reinforced magnesium matrix composites prepared by in-situ method
[J]. Chin. J. Mater. Res., 2021, 35(6): 474
王殿君, 張明秋, 吉澤升 等.
原位自生法制備
石墨烯增強鎂基
復(fù)合材料的工藝和性能
[J]. 材料研究學(xué)報, 2021, 35(6): 474
[3]
Liu Y, Kang R, Feng X H, et al.
Microstructure and mechanical properties of Mg-Al-Ca-Mn-Zn wrought magnesium alloy
[J]. Chin. J. Mater. Res., 2022, 36(1): 13
劉 洋, 康 銳, 馮小輝 等.
Mg-Al-Ca-Mn-Zn變形鎂合金的組織和力學(xué)性能
[J]. 材料研究學(xué)報, 2022, 36(1): 13
[4]
Gu J Q, Tang W N, Xu S W.
Evolution of tensile deformation microstructure of Mg-0.4Zn magnesium alloy extruded sheet
[J]. Chin. J. Mater. Res., 2021, 37(7): 553
[本文引用: 2]
顧佳卿, 唐偉能, 徐世偉.
Mg-0.4Zn鎂合金擠壓板拉伸變形組織的演變
[J]. 材料研究學(xué)報, 2021, 37(7): 553
[本文引用: 2]
[5]
Kawamura Y, Hayashi K, Inoue A, et al.
Rapidly solidified powder metallurgy Mg97ZnlY2 alloys with excellent tensile yield strength above 600 MPa
[J]. Mater. Trans. JIM, 2001, 42: 1172
[本文引用: 2]
[6]
Abe E, Kawamura Y, Hayashi K, et al.
Long-period ordered structure in a high-strength nanocrystalline Mg-1at% Zn-2at% Y alloy studied by atomic-resolution Z-contrast STEM
[J], Acta Mater., 2002, 50: 3845
DOIURL [本文引用: 2]
[7]
Luo Z, Zhang S.
High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy
[J]. J. mater. Sci. lett., 2000, 19(9): 813.
DOIURL [本文引用: 3]
[8]
Chuang W S, Huang J C, Lin P H, et al.
Deformation mechanisms and mechanical properties of (0001) Mg-Zn-Y 18R-LPSO single crystals
[J]. J. Alloy. Compd., 2019, 772: 288
DOI [本文引用: 3] " />
The unusual increase in the strength by extrusion is a unique feature of recently developed Mg alloys containing the LPSO phase. In this study, we first elucidated the detailed mechanisms that induce this drastic strengthening. The dependencies of the deformation behavior of a Mg88Zn4Y7 extruded alloy, which contains similar to 86-vol% LPSO phase, on the temperature, loading orientation, and extrusion ratio were examined. It was found that the yield stress of the alloy is drastically increased by extrusion, but the magnitude of the increase in the yield stress is significantly different depending on the loading orientation. That is, the strengthening of the LPSO phase by extrusion shows a strong anisotropy. By the detailed analyses, this was clarified to be derived from the variation in the deformation mechanisms depending on the loading orientation and extrusion ratio. Basal slip was found to govern the deformation behavior when the loading axis was inclined at a 45 to the extrusion direction, while the predominant deformation mechanism varies from basal slip to the formation of deformation kink bands as the extrusion ratio increased when the loading axis was parallel to the extrusion direction. Moreover, it was clarified in this study that the introduction of a deformation-kink-band boundary during extrusion effectively acts as a strong obstacle to basal slip. That is, "the kink band strengthening" was first quantitatively elucidated, which contributes to the drastic increase in the yield stress of the extruded LPSO-phase alloys in the wide temperature range below 400 degrees C. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd.
[10]
Du X H, Duan G S, Hong M, et al.
Effect of V on the microstructure and mechanical properties of Mg-10Er-2Cu alloy with a long period stacking ordered structure
[J]. Mater. Lett., 2014, 122(5): 312
DOIURL [本文引用: 1]
[11]
Liu H, Xue F, Bai J, et al.
Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy
[J]. Mater. Sci. Eng. A, 2013, 585: 387
DOIURL [本文引用: 2]
[12]
Yang K, Zhang J S, Zong X M, et al.
Effect of microalloying with boron on the microstructure and mechanical properties of Mg-Zn-Y-Mn alloy
[J]. Mater Sci.Eng. A, 2016, 669: 340
[本文引用: 2]
[13]
Liao H, Kim J, Lee T, et al.
Effect of heat treatment on LPSO morphology and mechanical properties of Mg-Zn-Y-Gd alloys
[J]. J. Magnes. Alloy., 2020, 8: 1120.
DOIURL [本文引用: 3]
[14]
Zhang L, Huang H, Zhang S, et al.
Microstructure, mechanical properties and tribological behavior of two-phase Mg-Y-Cu alloys with long period stacking ordered phases
[J]. Met. Mater. Int., 2021, 27: 1605
DOI [本文引用: 3]
[15]
Kawamura Y, Yamasaki M.
Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure
[J]. Mater Trans., 2007, 48: 2986.
DOIURL [本文引用: 3]
[16]
Wang D D, Zhang W B, Zong X M, et al.
Abundant long period stacking ordered structure induced by Ni addition into Mg-Gd-Zn alloy
[J]. Mater. Sci. Eng. A, 2014, 9.
[本文引用: 3]
[17]
Yang X, Wu S S, Lü S L, et al.
Effects of Ni levels on microstructure and mechanical properties of Mg-Ni-Y alloy reinforced with LPSO structure
[J]. J. Alloy. Compd., 2017, 726:2 76.
DOIURL [本文引用: 3]
[18]
Zhang L, Zhang S J, Ouyang K X, et al.
Microstructure and mechanical properties of Mg-Er-Cu/Ni/Zn alloy with long period stacking ordered phases
[J]. Adv. Eng. Mater., 2021:2100368.
[本文引用: 5]
[19]
Wen K, Du W B, Liu K, et al.
Precipitation behavior of the 14H-LPSO structure in Mg-12Gd-2Er-1Zn-0.6Zr alloy
[J]. Rare Metals, 2016, 5(35): 367
[本文引用: 2]
[20]
Wang Y, Zhang F, Wang Y, et al.
Effect of Zn content on the microstructure and mechanical properties of Mg-Gd-Y-Zr alloys
[J]. Mater. Sci. Eng. A, 2019, 745: 149
DOIURL
[21]
Zhu C, Zhou L, Zheng J, et al.
Cluster on interface of LPSO phase and matrix in Mg-Gd-Y-Ni alloy: Atomic scale insight from HAADF-STEM
[J]. Mater. Lett., 2019, 235: 71
DOIURL [本文引用: 1]
[22]
Wu A R, Xia C Q.
Study of the microstructure and mechanical properties of Mg-rare earth alloys
[J]. Mater. Des., 2007, 28: 1963
DOIURL [本文引用: 1]
[23]
Rokhlin L L, Dobatkina T V.
Nikitina N I. Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups
[J]. Mater. Sci. Forum. 2003, 419/422: 291
[本文引用: 1]
[24]
Fang D R, Zhao S S, Lin X P, et al.
Correlation between microstructure and mechanical properties of columnar crystals in the directionally solidified Mg-Gd-Y-Er alloy
[J]. J. Magnes. Alloy., 2022, 10(3): 743
DOIURL [本文引用: 1]
[25]
Lu R P, Jiao K, Li N T, et al.
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys
[J]. J. Magnes. Alloy., .
[本文引用: 2]
[26]
Liu X Q, Zhao D S, Ye L L., et al.
Effect of Er contents on the microstructure of long period stacking ordered phase and the corresponding mechanical properties in Mg-Dy-Er-Zn alloys
[J]. Mater. Sci. Eng. A, 2018, 78: 461
[本文引用: 2]
Recrystallization and texture of magnesium alloy sheet during warm rolling based on multi-scale model
1
2021
聲明:
“含LPSO相Mg-Y-Er-Ni合金的組織和拉伸性能” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)