為了低成本和長(zhǎng)壽命安全飛行,飛機(jī)設(shè)計(jì)必須遵守?fù)p傷容限準(zhǔn)則
這個(gè)準(zhǔn)則在航空航天領(lǐng)域的應(yīng)用,刺激了對(duì)高強(qiáng)度、斷裂韌性和低疲勞裂紋擴(kuò)展速率鈦合金的需求[1]
Ti-6Al-4VELI和Ti-6-22-22S合金的應(yīng)用,提高了美國(guó)F-22、F-35和C-17等機(jī)型的使用壽命和戰(zhàn)斗力[2,3,4,5]
國(guó)內(nèi)通過優(yōu)化成分設(shè)計(jì)開發(fā)出一種新型高強(qiáng)高韌損傷容限型α+β雙相鈦合金,其成分體系為T-Al-Sn-Zr-Mo-Si-X(X表示一種或多種VB,VIB系列元素)[6,7]
這種合金可制成板材、棒材和各種模鍛件,有廣闊的應(yīng)用前景
Sellars and McTegart [8]提出,可用Arrhenius方程中的正弦-雙曲線定律表示材料的流變應(yīng)力
許多學(xué)者修改這個(gè)方程以擴(kuò)大其應(yīng)用范圍[9,10,11],Mandal等[12]和Lin等[13]用應(yīng)變和應(yīng)變率補(bǔ)償?shù)恼译p曲本構(gòu)方程,分別預(yù)測(cè)了鈦改性?shī)W氏體不銹鋼和42CrMo鋼的流動(dòng)應(yīng)力
吳文祥等[14]為了預(yù)測(cè)NZ30K合金在熱變形過程中的流動(dòng)應(yīng)力,基于變形加熱的校正數(shù)據(jù)建立了基于應(yīng)變補(bǔ)償?shù)碾p曲-正弦本構(gòu)方程
本文進(jìn)行Ti-62A合金的熱壓縮試驗(yàn)研究其熱變形行為,對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行多元線性回歸擬合研究材料參數(shù)與應(yīng)變量的多項(xiàng)式函數(shù)關(guān)系,根據(jù)應(yīng)變量對(duì)Ti-62A合金熱變形行為的影響建立基于應(yīng)變補(bǔ)償?shù)腡i-62A合金Arrhenius變形抗力模型
1 實(shí)驗(yàn)方法
實(shí)驗(yàn)用材料為100 mm厚的熱軋Ti-62A合金板材,其化學(xué)組成列于表1,其原始組織由網(wǎng)籃狀組織、魏氏組織以及晶間α相組成(圖1),α→β相轉(zhuǎn)變溫度約為965℃
壓縮實(shí)驗(yàn)用試樣,其直徑為8 mm長(zhǎng)度為12 mm
用Gleeble-3800熱模擬試驗(yàn)機(jī)對(duì)圓柱試樣進(jìn)行熱壓縮,應(yīng)變量為60%,變形溫度為800℃、850℃、900℃和950℃,應(yīng)變速率為0.001 s-1、0.01 s-1、0.1 s-1、1 s-1和10 s-1
變形前將試樣以10℃/s的速率加熱到變形溫度,保溫2 min以消除試樣內(nèi)溫度梯度,再以設(shè)定的應(yīng)變速率進(jìn)行壓縮實(shí)驗(yàn),變形結(jié)束后將試樣水冷
Table 1
表1
表1Ti-62A鈦合金的化學(xué)成分
Table 1Chemical composition of Ti-62A titanium alloy (mass fraction, %)
Al
|
Cr
|
Mo
|
Zn
|
Zr
|
Si
|
Fe
|
C
|
N
|
H
|
O
|
Ti
|
5.25~6.25
|
1.75~2.25
|
1.75~2.25
|
1.75~2.25
|
1.75~2.25
|
0.20~0.27
|
≤0.15
|
≤0.04
|
≤0.03
|
≤0.0125
|
≤0.13
|
Bal.
|
圖1
圖1實(shí)驗(yàn)用Ti-62A合金的原始組織
Fig.1Micrograph of the as received Ti-62A alloy
2 結(jié)果和討論2.1 Ti-62A 合金的流變行為
圖2表明,在Ti-62A合金試樣受壓變形的初始階段加工硬化占主導(dǎo),隨著應(yīng)變量的增加流變應(yīng)力急劇增大,經(jīng)歷很小的應(yīng)變即達(dá)到峰值應(yīng)力,隨后動(dòng)態(tài)回復(fù)和動(dòng)態(tài)再結(jié)晶引起的軟化大于加工硬化,使流變應(yīng)力迅速減小
當(dāng)變形量達(dá)到某一值時(shí)加工硬化與動(dòng)態(tài)軟化達(dá)到動(dòng)態(tài)平衡,在真應(yīng)力-應(yīng)變曲線上流變應(yīng)力基本上保持不變
圖2還表明,在一定的應(yīng)變速率下流變應(yīng)力隨著變形溫度的提高而降低
圖2
圖2在不同變形條件下Ti-62A合金的流變應(yīng)力曲線
Fig.2Flow stress curves of Ti-62A alloy under different deformation conditions (a) 0.001 s-1; (b) 0.01 s-1; (c) 0.1 s-1; (d) 1 s-1; (e) 10 s-1
2.2 鈦合金在熱壓縮過程中的動(dòng)態(tài)軟化率
無論應(yīng)變速率多大,Ti-62A合金的動(dòng)態(tài)軟化速率都隨著變形溫度的提高而降低
變形溫度較低(800℃)時(shí)流變應(yīng)力曲線大多為動(dòng)態(tài)軟化型,而變形溫度較高(950℃)時(shí)流變應(yīng)力曲線大多屬于動(dòng)態(tài)回復(fù)型,中間變形溫度(850℃)的流變應(yīng)力曲線大多屬于動(dòng)態(tài)再結(jié)晶型,如圖2所示
結(jié)果表明[15,16,17,18],隨著變形溫度的提高流變應(yīng)力曲線表現(xiàn)出的動(dòng)態(tài)軟化速率都是降低的
本文根據(jù)熱力學(xué)理論解釋這種反?,F(xiàn)象
使用JmatPro材料模擬軟件分別計(jì)算了Ti-62A合金、TC11合金[15]、工業(yè)純鈦[19]和TB17合金[23]中關(guān)鍵元素的原子相對(duì)活性,結(jié)果如圖3所示
從圖3a可見,溫度對(duì)Ti-62A合金中Cr和Mo兩種元素的原子活性有顯著的影響
從800℃升高到950℃,Cr和Mo的原子活性都顯著降低
Cr原子的活性從0.206降低到0.074(降幅達(dá)到64.1%),Mo的降幅也達(dá)到64.3%
溫度對(duì)TC11合金中Mo元素的原子活性也有顯著的影響,從300℃升高到950℃元素Mo的原子活性顯著降低(圖3b),從0.613降低到0.034(降幅達(dá)94.5%)
但是,溫度對(duì)工業(yè)純鈦和TB17合金中各元素的原子活性并沒有顯著的影響(圖3c和3d)
α型鈦合金[19,20,21,22]和β型鈦合金[23,24]的熱加工流變應(yīng)力曲線都表明,隨著加工溫度的升高動(dòng)態(tài)軟化速率降低
為此,本文使用JmatPro材料模擬軟件分別計(jì)算了Ti-62A合金、工業(yè)純鈦和TB17合金中α和β相的比例(圖4)
可以看出,三種合金中β相的含量均隨著變形溫度的升高而提高
溫度由800℃升高到950℃,Ti-62A合金中的β相含量由32.1%提高到84.3%,工業(yè)純鈦和β鈦合金中β相的比例均已提高到100%
在三種鈦合金的高溫變形過程中都可能存在形變誘導(dǎo)α相向β相的轉(zhuǎn)變(存在晶體結(jié)構(gòu)有hcp結(jié)構(gòu)向bcc結(jié)構(gòu)的轉(zhuǎn)變),消耗部分變形能使其在較高溫度下變形的動(dòng)態(tài)軟化率較低
圖3
圖3鈦合金中合金元素的活性隨溫度的變化
Fig.3Change of alloy element activity with temperature in titanium alloy (a) Ti-62A alloy; (b) TC11 alloy; (c) Commercially pure titanium; (d) TB17 alloy
圖4
圖4鈦合金中α相和β相的比例隨溫度的變化
Fig.4Change of the ratio of α phase and β phase with temperature in titanium alloy (a) Ti-62A alloy; (b) Commercially pure titanium; (c) TB17 alloy
可以推測(cè),α型鈦合金和β型鈦合金出現(xiàn)動(dòng)態(tài)軟化率隨變形溫度升高而降低的現(xiàn)象和相比例的變化,與β相比例的增大密切相關(guān);但是,α+β雙相鈦合金的這一現(xiàn)象則可能是主要合金元素Mo、Cr等β穩(wěn)定元素的原子活性隨溫度升高逐漸降低與β相比例增大共同作用的結(jié)果
這表明,合金元素、相比例和變形溫度對(duì)Ti-62A合金的熱變形行為都有顯著的影響
這種合金的α→β相的轉(zhuǎn)變溫度約為965℃,即隨著變形溫度(800~950℃)的提高變形試樣中β相的比例增大
上述兩種元素在β相(bcc結(jié)構(gòu))中的活性較低,導(dǎo)致上述反?,F(xiàn)象
2.3 變形溫度對(duì)Ti-62A 合金顯微組織的影響
圖5給出了Ti-62A合金在應(yīng)變速率為0.001 s-1、不同溫度下熱壓縮變形后的金相照片
變形溫度為800℃時(shí),合金的顯微組織由片狀的初生α相和β轉(zhuǎn)變組織組成(圖5a);變形溫度為850℃時(shí)片狀α相的數(shù)量減少,β轉(zhuǎn)變組織的尺寸增大(圖5b);變形溫度為900℃時(shí)α相發(fā)生了動(dòng)態(tài)再結(jié)晶或球化,β相發(fā)生再結(jié)晶,產(chǎn)生新的等軸β晶粒(圖5c);變形溫度為950℃時(shí)β晶粒完全回復(fù)與再結(jié)晶,出現(xiàn)粗大的等軸 β晶粒,α相幾乎消失(圖5d)
可以看出,隨著變形溫度的升高β晶粒通過晶界遷移粗化,使變形合金中β相的比例增高
這表明,隨著變形溫度的升高更多的α相向β相轉(zhuǎn)變
這個(gè)轉(zhuǎn)變需要能量且隨著變形溫度的升高Ti-62A中主要合金元素Cr、Mo的活性降低,使流變應(yīng)力曲線表現(xiàn)出的應(yīng)變軟化速率隨著變形溫度的升高反而降低
圖5
圖5在應(yīng)變速率為 0. 001 s-1、不同溫度條件下熱壓縮變形后Ti-62A 合金的顯微組織
Fig.5Microstructure of Ti-62A alloy deformed by hot compression at different temperatures with strain rate of 0.001 s-1 (a) 800℃, (b) 850℃, (c) 900℃, (d) 950℃
圖6給出了Ti-62A合金經(jīng)應(yīng)變速率為1 s-1、在不同溫度熱壓縮變形后的顯微組織照片
與圖5中金相相比,盡管應(yīng)變速率高了3個(gè)數(shù)量,Ti-62A合金的微觀組織仍表現(xiàn)出相同的變化規(guī)律
變形溫度為800℃時(shí)α相與β轉(zhuǎn)變組織都發(fā)生了彎曲(圖6a);圖 6b、6c和6d中的變形分別為經(jīng)1 s-1和850℃、900℃和950℃熱壓縮變形,Ti-62A合金的顯微組織由片層狀的初生α相與β轉(zhuǎn)變組織組成
隨著變形溫度的升高α相含量降低,β轉(zhuǎn)變組織逐漸增多,且β晶粒尺寸增大(圖6b~d)
但是圖5d和圖6d表明,變形溫度同為950℃,應(yīng)變速率對(duì)等軸β相的晶粒尺寸影響顯著,前者的晶粒尺寸明顯大于后者
從圖6d還可以看出,在1 s-1和950℃變形條件下仍有少量的片狀α相沒有向β相轉(zhuǎn)變
圖6
圖6在應(yīng)變速率為1 s-1、不同溫度條件下變形的Ti-62A合金的顯微組織
Fig.6Microstructure of Ti-62A alloy deformed by hot compression at different temperatures with strain rate of 1 s-1 (a) 800℃, (b) 850℃, (c) 900℃, (d) 950℃
在熱變形過程中,溫度對(duì)Ti-62A合金的熱變形組織有顯著的影響
隨著加工溫度的升高,β相比例逐漸增大
由于β相的晶體結(jié)構(gòu)為體心立方結(jié)構(gòu)(bcc),具有較高層錯(cuò)能,而且其中的滑移系比密排六方結(jié)構(gòu)的α相多,容易發(fā)生以位錯(cuò)攀移和滑移為機(jī)制的動(dòng)態(tài)回復(fù)
這使合金中難以儲(chǔ)存足夠能量使合金發(fā)生動(dòng)態(tài)再結(jié)晶,即抑制了Ti-62A合金熱變形過程中的動(dòng)態(tài)再結(jié)晶行為
因此,變形溫度較高(950℃)時(shí),流變應(yīng)力曲線多屬于動(dòng)態(tài)回復(fù)型
同時(shí),Ti-62A合金中Cr、Mo甚至Ti元素隨著變形溫度升高活性降低,也阻礙了合金在熱變形過程中的動(dòng)態(tài)再結(jié)晶
2.4 基于應(yīng)變補(bǔ)償?shù)?Arrhenius 本構(gòu)模型
圖2中的流變應(yīng)力曲線和文獻(xiàn)[14,25]的結(jié)果都表明,應(yīng)變量對(duì)流變應(yīng)力有顯著的影響
因此,建立材料本構(gòu)方程時(shí)考慮應(yīng)變,可能更準(zhǔn)確的預(yù)測(cè)流變應(yīng)力
假設(shè)材料常數(shù)(即α,n,Q和lnA)為應(yīng)變的多項(xiàng)式函數(shù)[12,13],在材料的本構(gòu)方程中引入應(yīng)變這一影響因素
本文使用傳統(tǒng)的本構(gòu)模型計(jì)算出應(yīng)變?yōu)?.05~0.9(間隔為0.05)的Ti-62A合金的常數(shù)α,n,Q和lnA的值
對(duì)這些數(shù)據(jù)進(jìn)行2~8次多項(xiàng)式的擬合和比較,其中5次多項(xiàng)式適合表示應(yīng)變對(duì)Ti-62A合金常數(shù)的影響,即
α=C0+C1ε+C2ε2+C3ε3+C4ε4+C5ε5n=D0+D1ε+D2ε2+D3ε3+D4ε4+D5ε5Q=E0+E1ε+E2ε2+E3ε3+E4ε4+E5ε5lnA=F0+F1ε+F2ε2+F3ε3+F4ε4+F5ε5
(1)
式中C、D、E、F為擬合系數(shù)
表2給出了Ti-62A合金的常數(shù)α,n,Q和ln A的多項(xiàng)式擬合結(jié)果
Table 2
表2
表2Ti-62A合金常數(shù)擬合參數(shù)
Table 2Constant fitting parameters of Ti-62A alloy
α
|
n
|
Q
|
lnA
|
C0=0.00924
|
D0=1.91645
|
E0=398.95592
|
F0=36.20351
|
C1=0.01367
|
D1=3.79583
|
E1=-271.00142
|
F1=-21.10215
|
C2=-0.05939
|
D2=-13.6498
|
E2=137.81848
|
F2=-11.71244
|
C3=0.14321
|
D3=31.05524
|
E3=584.16655
|
F3=112.84221
|
C4=-0.1574
|
D4=-35.64127
|
E4=-1548.1067
|
F4=-209.55112
|
C5=0.06308
|
D5=15.75986
|
E5=960.56284
|
F5=116.99094
|
Ti-62A合金在試驗(yàn)條件范圍內(nèi)任意應(yīng)變下的流變應(yīng)力本構(gòu)方程可表示為
σ=1αln(ε˙exp(QRT)/A)1n+(ε˙exp(QRT)/A)2n+112
(2)
將使用公式(2)計(jì)算的流變應(yīng)力值與實(shí)測(cè)值的比較,驗(yàn)證了基于應(yīng)變補(bǔ)償所建立的本構(gòu)方程,圖7給出了在不同試驗(yàn)條件下Ti-62A合金流變應(yīng)力的計(jì)算值與實(shí)測(cè)值
從圖7可見,所建立本構(gòu)關(guān)系的計(jì)算值與實(shí)測(cè)值大部分曲線非常接近,較精確地反映了流變應(yīng)力與應(yīng)變速率、變形溫度和應(yīng)變量之間的關(guān)系
圖7
圖7應(yīng)變補(bǔ)償?shù)谋緲?gòu)方程模擬流變應(yīng)力曲線與實(shí)驗(yàn)流變應(yīng)力曲線
Fig.7Comparison of the flow stress curves simulated with strain-compensated constitutive equations and experimental flow stress curves (a) 0.001 s-1; (b) 1 s-1
為了評(píng)價(jià)基于應(yīng)變補(bǔ)償?shù)谋緲?gòu)方程對(duì)流變應(yīng)力的預(yù)測(cè)能力,引入相關(guān)系數(shù)(R)和平均相對(duì)誤差(AARE)作為衡量應(yīng)變補(bǔ)償本構(gòu)方程準(zhǔn)確性的指標(biāo),其表達(dá)式為
R=∑i=1N(Ei-Eˉ)(Pi-Pˉ)∑i=1N(Ei-Eˉ)2∑i=1N(Pi-Pˉ)2
(3)
AARE(%)=1N∑i=1NEi-PiEi×100%
(4)
式中Ei為實(shí)驗(yàn)所測(cè)的流變應(yīng)力值(MPa);Pi為由應(yīng)變補(bǔ)償本構(gòu)方程計(jì)算的流變應(yīng)力值(MPa);Eˉ,Pˉ分別為Ei,Pi的均值;N為熱模擬試驗(yàn)機(jī)采集數(shù)據(jù)點(diǎn)的數(shù)量
圖8給出了Ti-62A合金的應(yīng)變補(bǔ)償本構(gòu)方程的計(jì)算值與試驗(yàn)值的相關(guān)性對(duì)比
誤差分析結(jié)果表明,使用應(yīng)變補(bǔ)償本構(gòu)方程的計(jì)算值與試驗(yàn)值的相關(guān)性R為0.990;平均相對(duì)誤差(AARE)為8.983%
平均相對(duì)誤差小于10%,表明該模型與試驗(yàn)數(shù)據(jù)吻合良好
由此可見,本文建立的基于應(yīng)變補(bǔ)償?shù)腡i-62A合金流變應(yīng)力模型能較為準(zhǔn)確地描述Ti-62A鈦合金在熱變形過程中的應(yīng)力流動(dòng)變化行為
圖8
圖8Ti-62A合金的應(yīng)變補(bǔ)償方程計(jì)算值與實(shí)測(cè)流變應(yīng)力值的相關(guān)性
Fig.8Correlation between calculated value of strain compensation equation and measured value of flow stress in Ti-62A alloy
3 結(jié)論
(1) 在變形溫度800~950℃、應(yīng)變速率0.001~-10 s-1 條件下Ti-62A合金的流變應(yīng)力對(duì)變形溫度和應(yīng)變速率的影響較為敏感,流變應(yīng)力隨著變形溫度的降低和應(yīng)變速率的升高而升高
α鈦合金和β鈦合金出現(xiàn)動(dòng)態(tài)軟化率隨著變形溫度的升高而降低的現(xiàn)象,與β相比例的增大密切相關(guān);而α+β雙相鈦合金的這一現(xiàn)象則與主要合金元素的Mo、Cr等β穩(wěn)定元素隨溫度升高而逐漸降低、β相比例增大有更大的相關(guān)性
從800℃升高到950℃變形試樣中β相的比例逐漸增大,Mo、Cr兩種元素在β相(bcc結(jié)構(gòu))中的活性降低
在變形溫度范圍內(nèi)Mo和Cr的活性降幅均達(dá)到64%,導(dǎo)致變形過程中Ti-62A合金的晶界遷移速度和動(dòng)態(tài)軟化速率均隨著變形溫度的升高而降低,其在較低變形溫度(800℃)下的流變應(yīng)力曲線呈現(xiàn)為動(dòng)態(tài)軟化型,在較高變形溫度(950℃)下的流變應(yīng)力曲線反而呈動(dòng)態(tài)回復(fù)型
(2) 變形溫度對(duì)Ti-62A合金熱變形組織的影響顯著,變形溫度在800~950℃升高合金的中α相由較粗大的片層狀發(fā)生球化,而且α相的數(shù)量逐漸減少;β相由α相片層間的微量比例隨著溫度的升高逐漸增大,在950℃變形條件下合金的組織完全轉(zhuǎn)變?yōu)榈容S狀的β相
(3) 考慮應(yīng)變對(duì)材料常數(shù)(即α,n,Q和ln A)的影響建立了Ti-62A合金的應(yīng)變補(bǔ)償?shù)谋緲?gòu)方程,預(yù)測(cè)應(yīng)力和實(shí)測(cè)值之間的相關(guān)系數(shù)(R)達(dá)到0.990,平均相對(duì)誤差(AARE)為8.983%,表明根據(jù)應(yīng)變補(bǔ)償本構(gòu)方程能較好地預(yù)測(cè)Ti-62A合金的流變應(yīng)力行為
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Cao C X.
Change of material selection criterion and development of high damage-tolerant titanium alloy
[J].Acta. Metall. Sin., 2002, 38(S1): 4
[本文引用: 1]
(
曹春曉.
選材判據(jù)的變化與高損傷容限鈦合金的發(fā)展
[J]. 金屬學(xué)報(bào), 2002, 38(s1): 4)
[本文引用: 1]
[2]
Fu Y Y, Song Y Q, Hui S X, et al.
Research and Application of Typical Aerospace Titanium Alloys
[J]. Chinese Journal of Rare Metals, 2006, 30(6): 850
[本文引用: 1]
[3]
Li S K, Xiong B Q, Hui S X.
Effects of cooling rate on the fracture properties of TA15 ELI alloy plates
[J]. Rare Metals, 2007, 26(1): 33
DOIURL [本文引用: 1] " />
The Ti-Al-Sn-Zr-Cr-Mo-V-Si (Ti-62A) alloy, an alpha-beta alloy with high strength and fracture toughness, is currently used as an advanced structural material in aerospace and non-aerospace applications. Thermo-mechanical processes can be used to optimize the relationship between its strength and fracture toughness. A Ti-62A alloy bar can be machined through a transus β-forged plus α+β solution treated and aged specimen with a lamellar alpha microstructure. The effects of heat treatment on the mechanical properties were discussed. Heat treatment provided a practical balance of strength, fracture toughness, and fatigue crack growth resistance. A comparison of the Ti-62A alloy with the Ti-62222S alloy under the same thermo-mechanical processing conditions showed that their properties are at the same level.]]>
[8]
Sellars C M, McTegart W J.
On the mechanism of hot deformation
[J]. Acta Metallurgica, 1966, 14(9): 1136
DOIURL [本文引用: 1]
[9]
Li F G, Wang X N, Yu X L.
A New Optimization Method of Constitutive Equation for Hot Working Based on Physical Simulation and Numerical Simulation
[C]// Materials Science Forum.
Trans Tech Publications, 2008: 402
[本文引用: 1]
[10]
He X, Yu Z, Liu G, et al.
Mathematical modeling for high temperature flow behavior of as-cast Ti-45Al-8.5 Nb-(W, B, Y) alloy
[J]. Mater. Des, 2009, 30(1): 166
DOIURL [本文引用: 1]
[11]
Yu X, Li F, Li M.
Modeling and optimization of general constitutive equation of semi-solid thixoforming
[J]. Chin. J. Mech. Eng, 2007, 43(10): 72
[本文引用: 1]
[12]
Mandal S, Rakesh V, Sivaprasad P V, et al.
Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel
[J]. Mater. Sci. Eng. A, 2009, 500(1-2): 114
DOIURL [本文引用: 2]
[13]
Lin Y C, Chen M S, Zhong J.
Constitutive modeling for elevated temperature flow behavior of 42CrMo steel
[J]. Comp. Mater. Sci, 2008, 42(3): 470
DOIURL [本文引用: 2]
[14]
WU W X, Li J, Jie D, et al.
Prediction of flow stress of Mg-Nd-Zn-Zr alloy during hot compression
[J]. T. Nonferr. Metal. Soc, 2012, 22(5): 1169
DOIURL [本文引用: 2] class="outline_tb" " />
AbstractThe effects of cooling rate on the mechanical properties and the fatigue crack growth behavior of TA15 ELI alloy plates with different microstructures were investigated at room temperature. The results indicate that the cooling rate (water quench, air cooling, and furnace cooling) has a pronounced influence on the mechanical properties and on the fatigue crack growth, especially for air cooling and furnace cooling. Optical microstructure observation and scanning electron microscopy of tensile fracture surfaces were performed to gain an insight into the mechanism of properties. The dependence of mechanical properties and fatigue crack growth behavior on the cooling rate can be attributed to the α lamellae width and the α colony size, which induce the change in slip length. The microstructure produced by air cooling shows the best damage tolerance behavior when compared with water quench and furnace cooling.]]>
[4]
Wood J R, Russo P A, Welter M F, et al.
Thermomechanical processing and heat treatment of Ti-6Al-2Sn-2Zr-2Cr-2Mo-Si for structural applications
[J]. Mater. Sci. Eng. A, 1998, 243(1-2): 109
[5]
Arrieta A J.
Multidisciplinary Design Optimization of a Fighter Aircraft with Damage Tolerance Constraints and a Probabilistic Model of the Fatigue Environment
[D]. America: University of Oklahoma Graduate College, 2001
[6]
Yu Y, Hui S X, Ye W J, et al.
Effect of heat treatment process on the mechanical properties of T-Al-Sn-Zr-Mo-Si-X series alloys
[J].Heat. Treat. Met, 2005, 30(12): 68
(
于洋, 惠松驍, 葉文君等.
熱處理對(duì)Ti-Al-Sn-Zr-Mo-Si-X系合金性能的影響
[J]. 金屬熱處理, 2005, 30(12): 68)
[7]
Yu Y, Hui S X, Ye W J, et al.
Mechanical properties and microstucture of an α+β titanium alloy with high strength and fracture toughnes
[J]. Rare Metals, 2009, 28(4): 346
" />
Isothermal hot compression tests were carried out on Mg-3.0Nd-0.2Zn-0.4Zr ( mass fraction, %, NZ30K) alloy using a Gleeble-3500 thermo-simulation machine at temperatures ranging from 350 to 500 C and strain rates from 0.001 to 1 s(-1). A correction of flow stress for deformation heating at a high strain rate was carried out. Based on the corrected data for deformation heating, a hyperbolic sine constitutive equation was established. The constants in the constitutive equation of the hyperbolic sine form were determined as a function of strain. The flow stresses predicted by the developed equation agree well with the experimental results, which confirms that the developed constitutive equations can be used to predict the flow stress of NZ30K alloy during hot deformation.
[15]
Jiang X L.
Investigation of microstructure evolution and thermal deformation behavior of TC11 titanium alloy
[D].Shenyang: Northeastern University, 2011
[本文引用: 2]
(
江想蓮.
TC11鈦合金熱變形行為及其組織演變規(guī)律的研究
[D]. 沈陽(yáng): 東北大學(xué), 2011)
[本文引用: 2]
[16]
Dai J.
Hot Deformation Behavior and Processing Map of Titanium Alloy TC21
[D].Nanchang: Nanchang Hangkong University, 2015
(
戴俊.
TC21鈦合金熱態(tài)變形行為及加工圖
[D]. 南昌: 南昌航空大學(xué), 2015)
[17]
Zhang H F.
Studies on High Temperature Deformation Mechanics Behavior of Ti-6Al-2Sn Alloy
[D].Taiyuan: North University of China, 2009
(
張慧芳.
Ti-6Al-2Sn鈦合金高溫變形力學(xué)行為研究
[D]. 太原:中北大學(xué), 2009)
[18]
Liu K, Huang H G, Qin T C, et al.
High temperature compression deformation behavior and microstructure evolution of TC4 titanium alloy
[J].Special Casting & Nonferrous Alloys, 2019, (9): 936
(
劉昆, 黃海廣, 秦鐵昌等.
TC4鈦合金高溫壓縮變形行為與組織演變
[J]. 特種鑄造及有色合金, 2019, (9): 936)
[19]
Chai X Y, GAO Z Y, Pan T, et al.
Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation
[J].Chinese Journal of Engineering, 2018, 40(2): 226
[本文引用: 2]
(
柴希陽(yáng), 高志玉, 潘濤等.
工業(yè)純鈦TA2熱變形過程的流變行為本構(gòu)方程
[J]. 工程科學(xué)學(xué)報(bào), 2018, 40(2): 226)
[本文引用: 2]
[20]
Ren W B, Li J, Yu H, et al.
Hot Deformation Behaviors and Processing Map of TA17 Titanium Alloy
[J].Iron Steel Vanadium Titanium, 2017, 38(2): 46
(
任萬波, 李軍, 于輝等.
TA17 鈦合金熱變形行為及加工圖
[J]. 鋼鐵釩鈦, 2017, 38(2): 46)
[21]
Yang J, Wang Y Q, Li X M, et al.
Study on hot deformation behavior and processing map of TA15 titanium alloy
[J].China Titanium Industry, 2015(2): 29
(
楊軍, 王永強(qiáng), 李獻(xiàn)民等.
TA15鈦合金熱變形行為及加工圖研究
[J]. 中國(guó)鈦業(yè), 2015 (2): 29)
[22]
Xiong Y S, Wang Q Q, Xiang W, et al.
Hot deformation behavior of TA15 titanium alloy for aerospace
[J].Journal of Plasticity Engineering, 2017(3): 184
(
熊運(yùn)森, 王茜茜, 向偉等.
航空用TA15鈦合金熱變形行為研究
[J]. 塑性工程學(xué)報(bào), 2017(3): 184)
[23]
Zhou S W.
Study on hot deformation behavior and microstructure evolution simulation of TB17 titanium alloy
[D].Nanchang: Nanchang Hangkong University, 2018
[本文引用: 2]
(
周盛武.
TB17鈦合金熱變形行為及顯微組織演變模擬研究
[D]. 南昌: 南昌航空大學(xué), 2018)
[本文引用: 2]
[24]
He D.
Study on Hot Deformation Behavior and Processing Map of a New β Titanium Alloy Based on Friction Correction
[D].Xi'an: Xi'an University of architecture and technology, 2016
(
何丹.
基于摩擦修正的新型β鈦合金熱變形行為與加工圖研究
[D]. 西安:西安建筑科技大學(xué), 2016)
[25]
Pu E, Feng H, Liu M, et al.
Constitutive modeling for flow behaviors of super-austenitic stainless steel S32654 during hot deformation
[J]. J. Iron. Steel. Res. Int, 2016, 23(2): 178
選材判據(jù)的變化與高損傷容限鈦合金的發(fā)展
1
2002
聲明:
“Ti-62A合金動(dòng)態(tài)軟化速率異常的熱力學(xué)解釋及其應(yīng)變補(bǔ)償本構(gòu)方程” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)